Error running for loop
1 view (last 30 days)
Show older comments
Hello,
I am working with the following MATLAB code, it works properly if I want to calculate the values at some fixed points, but if I run the same code using for loop (for n=0:4), it reports an error (Error using vertcat
Dimensions of arrays being concatenated are not consistent.)
How could I resolve this issue.
I would be very grateful for your kind support.
Here's my MATLAB code:
syms P
l=100; a=50; b=20; h0=50; E=200; h1=50;%n=1.5;
for n=1:0.5:4
I0=b*h0^3/12; I1=b*h1^3/12;
L0=sqrt(P/(E*I0-P*n));%L0=simplify(L00);
L1=sqrt(P/(E*I1-P*n));%L1=simplify(L11);
v=0.3;
s=0.5;
f=1.93-3.07*s+14.53*s^2-25.11*s^3+25.8*s^4;
k=(E*I1)/(6*pi*h1*f*(1-v^2));
a11=cos(L1*l) - cos(L1*a) - L1*a*sin(L1*l) + L1*l*sin(L1*l);
a12=sin(L1*l) - sin(L1*a) + L1*a*cos(L1*l) - L1*l*cos(L1*l);
a13=cos(L0*a) - 1;
a14=sin(L0*a) - L0*a;
a21=-(L1*sin(L1*a) - L1*sin(L1*l)) - L1^2*cos(L1*a)*((P*n - E*I1)/k);
a22=(L1*cos(L1*a) - L1*cos(L1*l)) - L1^2*sin(L1*a)*((P*n - E*I1)/k);
a23=L0*sin(L0*a);
a24=(L0 - L0*cos(L0*a));
a31=-L1^2*cos(L1*a)*(P*n - E*I1);
a32=-L1^2*sin(L1*a)*(P*n - E*I1);
a33=L0^2*cos(L0*a)*(P*n - E*I0);
a34=L0^2*sin(L0*a)*(P*n - E*I0);
a41=L1^3*sin(L1*a)*(P*n - E*I1);
a42=-L1^3*cos(L1*a)*(P*n - E*I1);
a43=-L0^3*sin(L0*a)*(P*n - E*I0);
a44=L0^3*cos(L0*a)*(P*n - E*I0);
A=[a11 a12 a13 a14;a21 a22 a23 a24;a31 a32 a33 a34;a41 a42 a43 a44];
delta1=det(A);
delta2=subs(delta1);
delta=simplify(delta2);
F=matlabFunction(delta);
%FF=fplot(F)
%P=vpasolve(delta,P,1e3)
%P=feval(F,1e3 )% sol=fzero(F,1e3)
P=[];
for j = 0.01:10
PP = fzero(F, j);
P = [P; PP];
end
P_cr = min(P(P > 0))
D=plot(n,P_cr,'k.','linewidth',1.5)
%axis([0 4 0 1e6])
DD=double(D)
hold on
end
0 Comments
Accepted Answer
Cameron B
on 5 Jan 2020
if true
syms P
l=100; a=50; b=20; h0=50; E=200; h1=50;%n=1.5;
for n=1:0.02:4
I0=b*h0^3/12; I1=b*h1^3/12;
L0=sqrt(P/(E*I0-P*n));%L0=simplify(L00);
L1=sqrt(P/(E*I1-P*n));%L1=simplify(L11);
v=0.3;
s=0.5;
f=1.93-3.07*s+14.53*s^2-25.11*s^3+25.8*s^4;
k=(E*I1)/(6*pi*h1*f*(1-v^2));
a11=cos(L1*l) - cos(L1*a) - L1*a*sin(L1*l) + L1*l*sin(L1*l);
a12=sin(L1*l) - sin(L1*a) + L1*a*cos(L1*l) - L1*l*cos(L1*l);
a13=cos(L0*a) - 1;
a14=sin(L0*a) - L0*a;
a21=-(L1*sin(L1*a) - L1*sin(L1*l)) - L1^2*cos(L1*a)*((P*n - E*I1)/k);
a22=(L1*cos(L1*a) - L1*cos(L1*l)) - L1^2*sin(L1*a)*((P*n - E*I1)/k);
a23=L0*sin(L0*a);
a24=(L0 - L0*cos(L0*a));
a31=-L1^2*cos(L1*a)*(P*n - E*I1);
a32=-L1^2*sin(L1*a)*(P*n - E*I1);
a33=L0^2*cos(L0*a)*(P*n - E*I0);
a34=L0^2*sin(L0*a)*(P*n - E*I0);
a41=L1^3*sin(L1*a)*(P*n - E*I1);
a42=-L1^3*cos(L1*a)*(P*n - E*I1);
a43=-L0^3*sin(L0*a)*(P*n - E*I0);
a44=L0^3*cos(L0*a)*(P*n - E*I0);
A=[a11 a12 a13 a14;a21 a22 a23 a24;a31 a32 a33 a34;a41 a42 a43 a44];
delta1=det(A);
delta2=subs(delta1);
delta=simplify(delta2);
F=matlabFunction(delta);
%FF=fplot(F)
%P=vpasolve(delta,P,1e3)
P1=[];
for j = 0.01:10
PP = fzero(F, j);
P1 = [P1; PP];
end
P_cr = min(P1(P1 > 0));
D=plot(n,P_cr,'k.','linewidth',1.5);
%axis([0 4 0 1e6])
DD=double(D);
hold on
end
end
3 Comments
Cameron B
on 6 Jan 2020
Yea I was looking at the output and it seems as if something is off. I think the way you went about finding the lowest positive value is ok, but I’m not sure about the other code. I know this is related to fracture toughness calculations for 3 point bends, but something does seem to be off a bit. However I can’t be sure. Try this:
for j = 0.001:0.001:10 PP = fzero(F, j); P1 = [P1; PP]; end
Or you can try something else for the j range.
More Answers (1)
Colo
on 5 Jan 2020
Hi,
I copied your code and ran it. First loop works fine because P is 1x1sym.
in line 38 you change the size of P to 10x1: P=[P;PP]
Thus, a11 becomes 10x10 and a41 10x1 during the following iteration. So the dimensions cannot match in A.
The solution is to keep P as a 1x1sym.
You can either add a line at the beginning of the loop declaring P again as syms:
syms P
or use another variable instead of deleting P in line 36 and the following nested for loop.
I hope this helped :)
See Also
Categories
Find more on Loops and Conditional Statements in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!