Finding X value for a corresponding Y value from contents of a table
13 views (last 30 days)
Show older comments
I'd like to find values from the following table.
0 3.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0010 3.0000 1.6532 1.1366 1.0207 1.0025 1.0005
0.0020 3.0000 1.9523 1.3355 1.0915 1.0206 1.0073
0.0030 3.0000 2.1198 1.5034 1.1848 1.0592 1.0289
0.0040 3.0000 2.2283 1.6362 1.2808 1.1137 1.0674
0.0050 3.0000 2.3049 1.7426 1.3723 1.1783 1.1201
0.0060 3.0000 2.3630 1.8301 1.4574 1.2484 1.1825
0.0070 3.0000 2.4097 1.9042 1.5363 1.3208 1.2508
0.0080 3.0000 2.4486 1.9686 1.6099 1.3935 1.3219
0.0090 3.0000 2.4818 2.0259 1.6788 1.4653 1.3937
0.0100 3.0000 2.5109 2.0775 1.7435 1.5355 1.4651
0.0110 3.0000 2.5371 2.1250 1.8047 1.6033 1.5348
0.0120 3.0000 2.5613 2.1691 1.8625 1.6685 1.6023
0.0130 3.0000 2.5835 2.2104 1.9173 1.7312 1.6675
0.0140 3.0000 2.6045 2.2492 1.9694 1.7911 1.7299
0.0150 3.0000 2.6240 2.2859 2.0189 1.8483 1.7898
0.0160 3.0000 2.6424 2.3205 2.0659 1.9030 1.8470
The column on th extreme left is independent quantity(say X) and the other columns contain multiple Y values observed over X. I'd like to find the value of X when Y = 1.5.
For instance, in the third column the value 1.5 doesn't occur. In such a case, I would like to interpolate. Any suggestion on how this can be done?
3 Comments
ananya gupta
on 13 Jan 2020
EXAMPLE 7: EVALUATING FUNCTIONS AT SPECIFIC VALUES
Evaluate \displaystyle f\left(x\right)={x}^{2}+3x - 4f(x)=x2+3x−4 at
- \displaystyle 22
- \displaystyle aa
- \displaystyle a+ha+h
- \displaystyle \frac{f\left(a+h\right)-f\left(a\right)}{h}hf(a+h)−f(a)
SOLUTION
Replace the \displaystyle xx in the function with each specified value.
- Because the input value is a number, 2, we can use algebra to simplify.⎧⎨⎩f(2)=22+3(2)−4=4+6−4=6{f(2)=22+3(2)−4=4+6−4=6
- In this case, the input value is a letter so we cannot simplify the answer any further.\displaystyle f\left(a\right)={a}^{2}+3a - 4f(a)=a2+3a−4
- With an input value of \displaystyle a+ha+h, we must use the distributive property.{f(a+h)=(a+h)2+3(a+h)−4=a2+2ah+h2+3a+3h−4{f(a+h)=(a+h)2+3(a+h)−4=a2+2ah+h2+3a+3h−4
- In this case, we apply the input values to the function more than once, and then perform algebraic operations on the result. We already found that\displaystyle f\left(a+h\right)={a}^{2}+2ah+{h}^{2}+3a+3h - 4f(a+h)=a2+2ah+h2+3a+3h−4and we know that\displaystyle f\left(a\right)={a}^{2}+3a - 4f(a)=a2+3a−4Now we combine the results and simplify.⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩
⎧⎨⎩f(a+h)−f(a)h=(a2+2ah+h2+3a+3h−4)−(a2+3a−4)h⎧⎪
⎪
⎪
⎨⎪
⎪
⎪
⎩
=2ah+h2+3hh =h(2a+h+3)h{cc{ccFactor out h. =2a+h+3{cc{ccSimplify.
If you are intrested to learn matlab from basic to advance then contact to CETPA INFOTECH.
Walter Roberson
on 14 Jan 2020
Raj comments to ananya,
irrelevant to question
I agree with Raj, this does appear to be talking about something else entirely.
Accepted Answer
Raj
on 13 Jan 2020
You can use 'interp1' command.
For example, in case of third column you can use:
interp1(A(:,4), A(:,1),1.5)
which gives
ans =
0.002979749851102
0 Comments
More Answers (0)
See Also
Categories
Find more on Testing Frameworks in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!