ODE solver: how to integrate a system with a vector of parameters?

1 view (last 30 days)
Hello! I would like to ask how can I solve the system below for V varying from 1 to 1.2 with step 0.001? My aim is to plot bifurcation diagramm.
function [out] = chuaSmoothIris(~,in,alpha, beta, A, C, V)
x = in(1);
y = in(2);
z = in(3);
xdot = alpha*y - A*alpha*x^3 - C*alpha*x - V*alpha*x;
ydot = x - y + z;
zdot = -beta*y;
out = [xdot ydot zdot]';
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
t = [0 400];
y = [0.004 0 0];
alpha = 15.6;
beta = 28;
A = 0.002;
C = -1.3;
V = 1:0.001:1.2;
[t,y] = ode45(@(t, y) chuaSmoothIris(t, y, alpha', beta', A', C', V'), t, y );

Accepted Answer

J. Alex Lee
J. Alex Lee on 24 Jan 2020
Are you just looking for solving the ODE as many times as you have different values of V?
t = [0 400];
y = [0.004 0 0];
alpha = 15.6;
beta = 28;
A = 0.002;
C = -1.3;
V = 1:0.001:1.2;
for i = 1:length(V)
[t,y] = ode45(@(t, y) chuaSmoothIris(t, y, alpha', beta', A', C', V(i)), t, y );
end
  3 Comments
J. Alex Lee
J. Alex Lee on 24 Jan 2020
Oops. It's because you are overwriting the variable y.
t = [0 400];
y0 = [0.004 0 0]; % give this a special name
alpha = 15.6;
beta = 28;
A = 0.002;
C = -1.3;
V = 1:0.001:1.2;
for i = 1:length(V)
[t,y] = ode45(@(t, y) chuaSmoothIris(t, y, alpha', beta', A', C', V(i)), t, y0 );
end

Sign in to comment.

More Answers (0)

Categories

Find more on Programming in Help Center and File Exchange

Tags

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!