How to do multiple regression where all dependent and independent variables have uncertainties?
3 views (last 30 days)
Show older comments
I have some data that I would like to run multiple regression on. The important thing here is that I would like the multiple regression to take into account the uncertainties in each of the data points -- something that mvregress doesn't do, as far as I can tell. What's more, each measurement in each of the variables has an uncertainty associated with it. For example, each measurement y(i) in the dependent variable y has its own uncertainty sy(i).
y = [y(1) y(2) ... y(n)]; % measured values of y
sy = [sy(1) sy(2) ... sy(n)] % uncertainties in measured values of y
The same goes for each of the independent variables x, w, z, etc.
x = [x(1) x(2) ... x(n)]
sx = [sx(1) sx(2) ... sx(n)]
When doing a single linear regression analysis, the function york_fit is able to handle data that have uncertainties in both the measured x- and y-values. I'd like to use something analogous to that -- just for multiple regression.
Anybody know how to do that? Is there a variant on mvregress that does that? Are there any canned functions that do that?
-Ken
0 Comments
Answers (0)
See Also
Categories
Find more on Linear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!