How to calculate the accuracy of the classifier ? and show the confusion matrix.
4 views (last 30 days)
Show older comments
I had implemented a simple face recognition code. how to calculate its accuracy? and how to plot the confusion matrix .
clc
clear
% Load Image dataset
faceDatabase = imageSet('facedatabaseatt','recursive');
%splitting into training and testing sets
[training,test] = partition(faceDatabase,[0.8 0.2]);
% Extract HOG Features for training set
featureCount = 1;
for i=1:size(training,2)
for j = 1:training(i).Count
trainingFeatures(featureCount,:) = extractHOGFeatures(read(training(i),j));
% imshow(read(training(i),j));
%pause(0.0011);
trainingLabel{featureCount} = training(i).Description;
featureCount = featureCount + 1;
end
personIndex{i} = training(i).Description;
end
% Create 40 class classifier
faceClassifier = fitcknn(trainingFeatures,trainingLabel);
%testing
for person=1:40
for j = 1:test(person).Count
queryImage = read(test(person),j);
queryFeatures = extractHOGFeatures(queryImage);
actualLabel = predict(faceClassifier,queryFeatures) %actuallabel
C=test(person).Description; % predictedlabel
predictedLabel= cellstr(C) %converting into cell array
end
end
0 Comments
Answers (1)
Hitham
on 25 Sep 2020
confusionmat computes the Confusion matrix as.
[cm,order] = confusionmat(actualLabel,predictedLabel);
Or, you can use my function.
function [c_matrix]=confusionmat1(actual,predict)
% It computes confusion matrix
classList=unique(actual);
N=length(classList);
cm = zeros(N,N);
for j=1:length(actual)
posClassGT = strmatch(actual{j}, classList, 'exact');
posClass = strmatch(predict{j}, classList, 'exact');
cm(posClassGT,posClass) = cm(posClassGT,posClass) + 1;
end
end
0 Comments
See Also
Categories
Find more on Pattern Recognition and Classification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!