How to make cosine Distance classify
26 views (last 30 days)
Show older comments
Hello! I am a beginner in Matlab.
I have dataset that consisted of 90 data (10 label x 9 data).
Can I get an idea to make classify based on cosine distance or euclidean distance, etc?
2 Comments
Ameer Hamza
on 13 Mar 2020
Can you show an example of your dataset. For example, attach a small dataset and describe what is your expected output.
Accepted Answer
Ameer Hamza
on 14 Mar 2020
If you want to classify a new vector by using the Euclidean or cosine distance between the rows of your matrix and the new vector the try this
data = readmatrix('geo01_KTH.csv');
predictors = data(:, 1:end-1);
labels = data(:, end);
predictors = normalize(predictors, 2, 'range'); % normalize each row to be in range 0-1
x = rand(1, 2352); % generate a random vector
euclidean_dist = pdist2(predictors, x, 'euclidean');
cosine_dist = pdist2(predictors, x, 'cosine');
[~, euclidean_index] = min(euclidean_dist);
[~, cosine_index] = min(cosine_dist);
euclidean_prediction = labels(euclidean_index);
cosine_prediction = labels(cosine_index);
11 Comments
More Answers (0)
See Also
Categories
Find more on Classification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!