Hi,
I'm currently practicing numerical root-finding, using simple sets of nonlinear equations and writing my own solvers -- with an eye towards using Matlab's fsolve for my real problem that's in many more variables. This way, I'll be using fsolve while having a good sense of what root-finding methods generally do, what the pros and cons of various methods are, etc.
Since my practice problems are easy for now, I can differentiate the functions to compute the Jacobian matrices myself, and then code it up in the script files. However, I imagine it's not best practice to continue doing this, especially when I start considering many more variables, and the Jacobian / Hessian matrices get larger.
What's considered "best practice" for computing derivatives to use for, say, a root-finding method? Should I purchase and use the Symbolic toolbox, or is there another way to approach differentiation, without having to do it by hand?
I think I'll eventually get into some "finite-differencing" methods, but I'm not there yet and know nothing about them -- I'm maybe a few weeks away. So, any thoughts and recommendations are welcome.
Thanks,
0 Comments
Sign in to comment.