How I can implement the advection model with PCs

3 views (last 30 days)
lulu
lulu on 2 Nov 2020
Answered: Gautam on 1 Jul 2025
The model is
{u_t}^{+} +{\gamma}{u_x}^{+}= \lambda(v)(u^{-}-u^{+})-\beta{u^+}{v}
{u_t}^{-} -{\gamma}{u_x}^{-}= \lambda(v)(u^{+}-u^{-})-\beta{u^-}{v}
v_t= \beta{u v}-\alpha{v}, , \text{with}\;\;\; u=u^{+}+u^{-}.
Regarding the initial conditions we use
u^+(x, 0)=u_{*}^{+}+a_1 sin(10xk_1),\; u^-(x, 0)=u_{*}^{-}+a_2 sin(10xk_1),\nonumber\\
v(x, 0)=v_{*}+a_3 sin(10xk_1).
k_1 := 2 \Pi/L, L=1, and I want to use periodic conditions

Answers (1)

Gautam
Gautam on 1 Jul 2025
Hello lulu,
Here's a basic framework for numerically solving a coupled system of advection-reaction PDEs
clear; clc;
% Parameters
L = 1;
xmin = 0; xmax = L;
N = 100; % Number of spatial points
dx = (xmax - xmin)/N;
x = linspace(xmin, xmax-dx, N); % N points, periodic
dt = 0.0005; % Time step
tmax = 0.1; % Final time
nt = round(tmax/dt);
gamma = 0.5; % Advection speed
beta = 1.0; % Reaction parameter
alpha = 0.5; % Decay rate
u_star_p = 1.0; % Steady-state values
u_star_m = 1.0;
v_star = 1.0;
a1 = 0.1; a2 = 0.1; a3 = 0.1;
k1 = 2*pi/L;
lambda = @(v) 1.0; % Example: constant, or try @(v) 1+0.5*v
% Initial conditions
u_p = u_star_p + a1*sin(10*x*k1);
u_m = u_star_m + a2*sin(10*x*k1);
v = v_star + a3*sin(10*x*k1);
% Preallocate for speed
u_p_new = zeros(1,N);
u_m_new = zeros(1,N);
v_new = zeros(1,N);
for n = 1:nt
% Periodic boundary indices
ip = [2:N, 1]; % i+1 with wrap
im = [N, 1:N-1]; % i-1 with wrap
% Advection (upwind)
% For u^+ : upwind left (since +gamma)
u_p_x = (u_p - u_p(im))/dx;
% For u^- : upwind right (since -gamma)
u_m_x = (u_m(ip) - u_m)/dx;
% Coupling/reaction terms
lam = lambda(v);
u = u_p + u_m;
% Update equations (explicit Euler)
u_p_new = u_p + dt * ( ...
- gamma * u_p_x ...
+ lam.*(u_m - u_p) ...
- beta * u_p .* v );
u_m_new = u_m + dt * ( ...
+ gamma * u_m_x ...
+ lam.*(u_p - u_m) ...
- beta * u_m .* v );
v_new = v + dt * ( ...
+ beta * u .* v ...
- alpha * v );
% Advance
u_p = u_p_new;
u_m = u_m_new;
v = v_new;
end
% Plot results
figure;
plot(x, u_p, 'r', x, u_m, 'b', x, v, 'k', 'LineWidth', 2);
legend('u^+','u^-','v');
xlabel('x'); ylabel('Value');
title('Advection-Reaction System with Periodic BC');

Categories

Find more on Deployment, Integration, and Supported Hardware in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!