Finite Difference method solver
4 views (last 30 days)
Show older comments
I have the following code in Mathematica using the Finite difference method to solve for c1(t), where . However, I am having trouble writing the sum series in Matlab. The attatched image shows how the plot of real(c(t) should look like.
\[CapitalOmega] = 0.3;
\[Alpha][\[Tau]] := Exp[I \[CapitalOmega] \[Tau]] ;
dt = 0.1;
Ns = 1000;
ds = dt/Ns;
Ttab = Table[T, {T, 0, 10, dt}];
Stab = Table[s, {s, 0, dt - ds, ds}];
c[0] = 1;
Do[corrSum[n] = Sum[c[nn - 1]*Sum[\[Alpha][n dt - m ds]*ds, {m, Ns (nn - 1), Ns nn , 1}], {nn, 1, n}];
c[n] = c[n - 1] - dt*corrSum[n](*c[n-1]*\[Alpha][n dt]*), {n, 1, 100}]
cTtab = Table[{n*dt, c[n]}, {n, 0, 100}]
FDiff = ListPlot[Re[cTtab], PlotStyle -> Orange, PlotLegends -> {"Finite Difference"}]
0 Comments
Accepted Answer
Alan Stevens
on 7 Nov 2020
By differentiating c' again you can solve the resulting second order ode as follows
c0 = 1;
v0 = 0;
IC = [c0 v0];
tspan = [0 10];
[t, C] = ode45(@odefn, tspan, IC);
c = C(:,1);
plot(t,real(c),'ro'),grid
xlabel('t'), ylabel('real(c)')
function dCdt = odefn(~,C)
Omega = 0.3;
c = C(1);
v = C(2);
dCdt = [v;
-1i*Omega*v - c];
end
This results in
7 Comments
Alan Stevens
on 8 Nov 2020
Well, here is an explicit finite difference version that uses an outer and an inner loop, with the same values of dt and ds as in the Mathematica version. However, it is probably not what you want still, as it isn't a line by line translation of the Mathematica code. I'll leave further development to you!
Omega = 0.3;
dt = 0.1;
Ns = 1000;
ds = dt/Ns;
t = 0:dt:10;
N = numel(t);
c = zeros(1,N);
c(1) = 1;
v = 0;
for n = 1:N-1 % Outer loop; c is updated each iteration of this loop
% Inner loop: c is taken to be constant through this loop, the same
% approximation as is made in section 5.2.1 of the pdf.
for nn = 1:Ns
v = v - (1i*Omega*v + c(n))*ds;
end
c(n+1) = c(n) + v*dt;
end
plot(t,real(c),'.'),grid
xlabel('t'),ylabel('real(c)')
More Answers (0)
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!