dlgradient: Error Value to differentiate must be a traced dlarray scalar.

31 views (last 30 days)
I want to train a deep network by Automatic Differentiation. Is these any solution?
layer2 = [
imageInputLayer([9 36 1],'Normalization','none','Name','input1-fcc')
convolution2dLayer([7,7],64,'Name','conv1-fcc')
batchNormalizationLayer('Name','bn1-fcc')
reluLayer('Name','relu1-fcc')
globalAveragePooling2dLayer('Name','pool5-fcc')
fullyConnectedLayer(1,'Name','fc1')];
lgraph = layerGraph(layer2);
dlnet = dlnetwork(lgraph);
% Input
a = rand(9,36,1,10);
a = dlarray(a,'SSCB');
a_pre = forward(dlnet,a);
% output
b = rand(1,10);
loss = mse(a_pre,b);
gradients = dlgradient(loss,dlnet.Learnables);

Accepted Answer

Anshika Chaurasia
Anshika Chaurasia on 18 Jan 2021
Hi Qi Lu,
You can try following code to compute gradients that will resolve your error:
layer2 = [
imageInputLayer([9 36 1],'Normalization','none','Name','input1-fcc')
convolution2dLayer([7,7],64,'Name','conv1-fcc')
batchNormalizationLayer('Name','bn1-fcc')
reluLayer('Name','relu1-fcc')
globalAveragePooling2dLayer('Name','pool5-fcc')
fullyConnectedLayer(1,'Name','fc1')];
lgraph = layerGraph(layer2);
dlnet = dlnetwork(lgraph);
% Input
a = rand(9,36,1,10);
a = dlarray(a,'SSCB');
[loss,gradients] = dlfeval(@compute_gradient,dlnet,a);
function [loss,gradients]=compute_gradient(dlnet,a)
a_pre = forward(dlnet,a);
% output
b = rand(1,10);
loss = mse(a_pre,b);
gradients = dlgradient(dlarray(loss),dlnet.Learnables);%automatic gradient
end
Refer to the following documentation for more information on Automatic Differentiation.

More Answers (0)

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!