Solving a Second Order Differential Equation
19 views (last 30 days)
Show older comments


0 Comments
Answers (2)
Steven Lord
on 29 Jan 2021
syms x t y(t)
dx = diff(x, t)
dy = diff(y, t)
x is not a function of t so its derivative with respect to t is 0.
y is a function of t so its derivative with respect to t is not 0. [It could be, if you substituted a constant into dy for y, but it's not always zero.]
dyForConstant = subs(dy, y, 5)
dyForNonconstant = subs(dy, y, sin(t))
James Tursa
on 29 Jan 2021
Edited: James Tursa
on 29 Jan 2021
Here is what I get:
>> syms y(t)
>> eqn = 4*diff(y,t,2)+32*diff(y,t)+24*y^3 == 192;
>> Dy = diff(y,t);
>> cond = [y(0)==1.5, Dy(0)==0];
>> ySol(t) = dsolve(eqn,cond)
Warning: Unable to find symbolic solution.
> In dsolve (line 216)
ySol(t) =
[ empty sym ]
Maybe not surprising that it can't find a symbolic solution given the y^3 term. So you could use a numeric solver instead. E.g.,
f = @(t,y) [y(2);(192 - 32*y(2) - 24*y(1)^3)/4];
[t,y] = ode45(f,[0 10],[1.5;0]);
plot(t,y(:,1)); grid on
0 Comments
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
