How to solve a system of 3 ODE and a linear equation.
1 view (last 30 days)
Show older comments
Ricardo Mendes
on 20 Feb 2021
Answered: Shadaab Siddiqie
on 23 Feb 2021
How to solve a system of 3 ODE
dvdt=z;
dzdt=-v/(L0*C0)-z*R0/L0
dTempdt=R0*((C0*z)^2)/(m_ponte*Cp_Al)
and one linear equation: R=R0*(1+Alfa*(temp(i)-T0)) to consider the resistence variation with temperature instead of constant resistence R0?
F=@(t, v, z, temp) [z; -v/(L0*C0)-z*R0/L0; R0*((C0*z)^2)/(m_ponte*Cp)];
v(1)=-20000;
z(1)=0;
temp(1)=298;
t(1)=0;
for i=1:N
k1 = h*F(t(i), v(i), z(i), temp(i));
k2 = h*F(t(i)+h/2, v(i)+k1(1)/2, z(i)+k1(2)/2, temp(i)+k1(3)/2);
k3 = h*F(t(i)+h/2, v(i)+k2(1)/2, z(i)+k2(2)/2, temp(i)+k2(3)/2);
k4 = h*F(t(i)+h, v(i)+k3(1), z(i)+k3(2), temp(i)+k3(3));
v(i+1) = v(i) + (1/6)*(k1(1)+2*k2(1)+2*k3(1)+k4(1));
z(i+1) = z(i) + (1/6)*(k1(2)+2*k2(2)+2*k3(2)+k4(2));
temp(i+1) = temp(i) + (1/6)*(k1(3)+2*k2(3)+2*k3(3)+k4(3));
end
0 Comments
Accepted Answer
Shadaab Siddiqie
on 23 Feb 2021
From my understanding you want to solve an 3rd degree ODE equations. You can go through solve ODE, symbolic variables and expressions and also dsolve for more information.
0 Comments
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!