how to solve PDE with derivative boundary conditions ?

4 views (last 30 days)
hey all
im trying to solve PDE with derivative boundary condition , so i tend to use the imaginary node method , could i have another way to solve it without any built in function
this is the qustion:
๐œ•๐‘‡๐œ•๐‘ก=๐œ•2๐‘‡๐œ•๐‘ฅ2+๐‘ž(๐‘ฅ) (1)
With ๐‘ž(๐‘ฅ)=100sin(๐œ‹๐‘ฅ) (2)
1)
๐‘‡(๐‘ฅ,0)=0 (3)
2)
๐œ•๐‘‡๐œ•๐‘ก(0,๐‘ก)=๐‘‡(0,๐‘ก)โˆ’10 (4)
3)
๐œ•๐‘‡๐œ•๐‘ก(1,๐‘ก)=10โˆ’๐‘‡(1,๐‘ก) (5)
clear all;
close all;
clc;
%% Demo program for parapolic pde
dt = 0.25;
dx = 0.1*dt;
alpha=1;
t = 0:dt:15;
x = 0:dx:4;
q_x=(100*sin(pi*x));
N = length(x)-1;
T=[]; %Dynamic size
T(1,:) = zeros(1,5) ; %Initial condition
for j=1:length(t)-1
T(1,N-1) = T(j+1,N) + (2*dx*(T(j+1,N+1)-10));
for i=2:N
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i))+q_x;
end
T(2,N+2) = T(j+1,N) + (2*dx*(10-T(j+1,N+1)));
end
mesh(t,x,T)
colorbar;
the code isn't evaluated , what is the proplem?

Accepted Answer

darova
darova on 2 Apr 2021
Try these corrections
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-10);
T(j+1,N) = T(j,N) + dt*(10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i)) + q_x(i); % note: q_x(i)
end
end
mesh(t,x,T)
  2 Comments
Mohammad Adeeb
Mohammad Adeeb on 2 Apr 2021
Edited: Mohammad Adeeb on 2 Apr 2021
it's worked but the mesh result is totally wrong
darova
darova on 3 Apr 2021
I made some change sto your code. Some notes:
  • should be larger than ( should be small )
  • should be small too
  • i changed boundary conditions ๐œ•๐‘‡๐œ•๐‘ก(0,๐‘ก)=๐‘‡(0,๐‘ก)โˆ’10 and ๐œ•๐‘‡๐œ•๐‘ก(1,๐‘ก)=10โˆ’๐‘‡(1,๐‘ก)
clc,clear
%% Demo program for parapolic pde
dt = 0.25;
dx = 5*dt;
alpha=1;
t = 0:dt:5;
x = 0:dx:20;
q_x = sin(pi*x/max(x));
N = length(x);
r = alpha*dt/dx^2;
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-1/10); % changed these
T(j+1,N) = T(j,N) + dt*(1/10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+r*diff(T(j,i-1:i+1),2) + q_x(i); % note: q_x(i)
end
end
surf(x,t,T)

Sign in to comment.

More Answers (0)

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!