How can i perform an ADI method on 2d heat equation

7 views (last 30 days)
im trying to slve this equation : ๐œ•๐‘‡ ๐œ•๐‘ก = ๐œ• 2๐‘‡ ๐œ•๐‘ฅ 2 + ๐œ• 2๐‘‡ ๐œ•๐‘ฆ 2
๐‘‡(๐‘ฅ, ๐‘ฆ, 0) = 0
๐‘‡(0, ๐‘ฆ,๐‘ก) = 0
๐‘‡(1, ๐‘ฆ,๐‘ก) = 0
๐‘‡(๐‘ฅ, 0,๐‘ก) = 0
(๐‘ฅ, 1,๐‘ก) = 100 sin ๐œ‹x
so for the first part which is in x direction i did the following :
c
lose all;
clc;
dt = 0.001; %time step
dx = 0.1; %step in x direction
t = 0:dt:15; %time interval (changable due to your desighn)
x = 0:dx:1; %x-axis interval (changable due to your desighn)
lamda=dt/(2*dx^2);
a=(1+2*lamda)*ones(1,13);%define matrix A
A=diag(a); %make matrix a diagonal one
N = length(x)+2; %interval (changable due to your desighn)
for i=1:N-1
A(i+1,i)=-lamda;
A(i,i+1)=-lamda;
end
A(1,1)=1+2*lamda;
A(1,2)=-lamda;
A(13,12)=-lamda;
A(13,13)=1+2*lamda;
T=[]; %Dynamic size array
a2=lamda*ones(1,13);
A2=diag(a);
for j=1:N-3
A2(j+3,j)=(1-2*lamda);
A2(j,j+3)=(1-2*lamda);
end
T(:,:,:) = zeros(length(t),length(y)+2,length(x)+2); %define initial condition
Tstar=zeros(length(x),length(y));
Tall=zeros(length(x),length(y));
for k=2:length(t)
for j=2:length(x)-1
fx=(l-2*lamda)*T(:,j,k-1)+lamda*T(:,j-1,k-1)+lamda*T(:,j+1,k-1);
fx(1)=0;
fx(end)=0;
Tstar(j,:)=(A\fx)';
end
for i=2:length(y)-1
fy=(1-2*lamda)*Tstar(i,:)+lamda*Tstar(i-1,:)+lamda*Tstar(i+1,:);
fy(:,1)=0;
fy(:,end)=100*sin(pi*x(i));
end
Tall(:,j)=A\fy;
T(:,:,k)=Tall(:,:);
end
i've used imaginary node to solve the proplem , also i did the following analysis for the code :
.

Answers (0)

Categories

Find more on Mathematics and Optimization in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!