Area between two curves without intersection
1 view (last 30 days)
Show older comments
Hi everyone.
I would like to calculate the area between two curves (see attachment).
I have used the trapz and polyarea function but these do not work because the curves are superimposed on each other without intersection.
Could someone please help me?
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
0 Comments
Answers (2)
darova
on 31 May 2021
Make sure curves have the same start and end
xx = linspace(x1(1),x1(end),100); % new mesh
y11 = interp1(x1,y1,xx); % interpolate curve1
y22 = interp1(x2,y2,xx); % interpolate curve2
A = trapz(xx,abs(y22-y11)); % calculate positive area
2 Comments
Torsten
on 31 May 2021
x and y are not two different curves, but one curve given in a (x,y) representation (like e.g. (x,y) = (cos(t),sin(t)) for a circle)
Paul
on 31 May 2021
I think this is what you're looking for:
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
plot(x,y,'-+')
p=polyshape(x,y);
plot(p)
p.area
8 Comments
Torsten
on 1 Jun 2021
I'd estimate the length of the big region as 10 and its height as 4, and 10x4 = 40. So no, the area of this example will be much smaller than the area for the first one.
Paul
on 1 Jun 2021
Edited: Paul
on 1 Jun 2021
Plotting both shows that area in example 2 is much smaller than in example 1.
x1=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y1=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
x2=[0,-1.58143962981297,-3.03392588365747,-4.31293028513336,-5.43316939640765,-6.43266612032772,-7.34751230187266,-8.19610716571275,-8.97053149511526,-9.63779510279898,-10.1519335567333,-10.4585616901778,-10.5342395749024,-10.3758946306706,-9.98217498098106,-9.34944176705073,-8.47251867761138,-7.35956551245431,-6.05095668830785,-4.62502866942295,-3.18355609435549,-1.82611854945020,-0.611557284260889,0.477054737792964,1.47779860348098,2.40953293828952,3.22796956291444,3.81329910953911,4.00379047888411,3.66637669160807,2.77294873115999,1.43501593689118];
y2=[0,-0.0914589891686976,-0.169258183169858,-0.137641932843007,0.115356308463203,0.650321396134900,1.44445426860180,2.40398635583359,3.39379566406802,4.25865376154095,4.84684849930363,5.03502448735570,4.83627564548227,4.37126677838120,3.80309691225722,3.29016826646019,2.94696153078223,2.83659552454877,2.98508831160315,3.38247203682421,3.96326780273134,4.58673760893439,5.02975831885881,5.09870485313676,4.70518969374756,3.90891301840727,2.89444462683932,1.89004771352925,1.07492003950258,0.526156770959942,0.222079396840722,0.0776605885521645];
plot(x1,y1,'-x',x2,y2,'-o'),grid
See Also
Categories
Find more on Elementary Polygons in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!