extracting subsequences of binary string
3 views (last 30 days)
Show older comments
as would be the code for the following string have the next subsequences ?
STRING
1(1), 0(2), 1(3), 1(4), 0(5), 0(6), 1(7), 0(8), 0(9), 1(10), 1(11), 1(12), 1(13), 0(14), 0(15), 0(16), 1(17), 1(18), 1(19), 0(20)
SUBSEQUENCES
01: 1(01), 0(02), 1(03), 1(04) -> [1,0,1,1],
02: 1(01), 1(03), 0(05), 1(07) -> [1,1,0,1],
03: 1(01), 1(04), 1(07), 1(10) -> [1,1,1,1],
04: 1(01), 0(05), 0(09), 1(13) -> [1,0,0,1],
05: 1(01), 0(06), 1(11), 0(16) -> [1,0,1,0],
06: 1(01), 1(07), 1(13), 1(19) -> [1,1,1,1],
07: 0(02), 1(03), 1(04), 0(05) -> [0,1,1,0],
08: 0(02), 1(04), 0(06), 0(08) -> [0,1,0,0],
09: 0(02), 0(05), 0(08), 1(11) -> [0,0,0,1],
10: 0(02), 0(06), 1(10), 0(14) -> [0,0,1,0],
11: 0(02), 1(07), 1(12), 1(17) -> [0,1,1,1],
12: 0(02), 0(08), 0(14), 0(20) -> [0,0,0,0],
13: 1(03), 1(04), 0(05), 0(06) -> [1,1,0,0],
14: 1(03), 0(05), 1(07), 0(09) -> [1,0,1,0],
15: 1(03), 0(06), 0(09), 1(12) -> [1,0,0,1],
16: 1(03), 1(07), 1(11), 0(15) -> [1,1,1,0],
17: 1(03), 0(08), 1(13), 1(18) -> [1,0,1,1],
18: 1(04), 0(05), 0(06), 1(07) -> [1,0,0,1],
19: 1(04), 0(06), 0(08), 1(10) -> [1,0,0,1],
20: 1(04), 1(07), 1(10), 1(13) -> [1,1,1,1],
21: 1(04), 0(08), 1(12), 0(16) -> [1,0,1,0],
22: 1(04), 0(09), 0(14), 1(19) -> [1,0,0,1],
23: 0(05), 0(06), 1(07), 0(08) -> [0,0,1,0],
24: 0(05), 1(07), 0(09), 1(11) -> [0,1,0,1],
25: 0(05), 0(08), 1(11), 0(14) -> [0,0,1,0],
26: 0(05), 0(09), 1(13), 1(17) -> [0,0,1,1],
27: 0(05), 1(10), 0(15), 0(20) -> [0,1,0,0],
28: 0(06), 1(07), 0(08), 0(09) -> [0,1,0,0],
29: 0(06), 0(08), 1(10), 1(12) -> [0,0,1,1],
30: 0(06), 0(09), 1(12), 0(15) -> [0,0,1,0],
31: 0(06), 1(10), 0(14), 1(18) -> [0,1,0,1],
32: 1(07), 0(08), 0(09), 1(10) -> [1,0,0,1],
33: 1(07), 0(09), 1(11), 1(13) -> [1,0,1,1],
34: 1(07), 1(10), 1(13), 0(16) -> [1,1,1,0],
35: 1(07), 1(11), 0(15), 1(19) -> [1,1,0,1],
36: 0(08), 0(09), 1(10), 1(11) -> [0,0,1,1],
37: 0(08), 1(10), 1(12), 0(14) -> [0,1,1,0],
38: 0(08), 1(11), 0(14), 1(17) -> [0,1,0,1],
39: 0(08), 1(12), 0(16), 0(20) -> [0,1,0,0],
40: 0(09), 1(10), 1(11), 1(12) -> [0,1,1,1],
41: 0(09), 1(11), 1(13), 0(15) -> [0,1,1,0],
42: 0(09), 1(12), 0(15), 1(18) -> [0,1,0,1],
43: 1(10), 1(11), 1(12), 1(13) -> [1,1,1,1],
44: 1(10), 1(12), 0(14), 0(16) -> [1,1,0,0],
45: 1(10), 1(13), 0(16), 1(19) -> [1,1,0,1],
46: 1(11), 1(12), 1(13), 0(14) -> [1,1,1,0],
47: 1(11), 1(13), 0(15), 1(17) -> [1,1,0,1],
48: 1(11), 0(14), 1(17), 0(20) -> [1,0,1,0],
49: 1(12), 1(13), 0(14), 0(15) -> [1,1,0,0],
50: 1(12), 0(14), 0(16), 1(18) -> [1,0,0,1],
51: 1(13), 0(14), 0(15), 0(16) -> [1,0,0,0],
52: 1(13), 0(15), 1(17), 1(19) -> [1,0,1,1],
53: 0(14), 0(15), 0(16), 1(17) -> [0,0,0,1],
54: 0(14), 0(16), 1(18), 0(20) -> [0,0,1,0],
55: 0(15), 0(16), 1(17), 1(18) -> [0,0,1,1],
56: 0(16), 1(17), 1(18), 1(19) -> [0,1,1,1],
57: 1(17), 1(18), 1(19), 0(20) -> [1,1,1,0],
0 Comments
Accepted Answer
Andrei Bobrov
on 21 Aug 2013
Edited: Andrei Bobrov
on 21 Aug 2013
N = 20;
n = 4;
A = hankel(1:N-n+1,N-n+1:N);
k = 0:n-1;
idx = [];
for ii = 1:size(A,1)
p = A(ii,:);
while p(end,end) + k(end) <= N
p = [p;p(end,:)+k];
end
idx=[idx;p];
end
or
N = 20;
n = 4;
A = hankel(1:N-n+1,N-n+1:N);
k = 0:n-1;
c = ceil((N - A(:,end) + 1)/k(end));
i2 = cumsum(c);
i1 = i2 - c + 1;
idx = zeros(i2(end),n);
for jj = 1:N-n+1
idx(i1(jj):i2(jj),:) = bsxfun(@plus,A(jj,:),(0:c(jj)-1)'*k);
end
ADD
s = [1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0];
[j1,j2,j2] = unique(s(idx),'rows')
out = [j1, histc(j2,1:max(j2))/i2(end)]; % This row corrected
8 Comments
More Answers (2)
Roger Stafford
on 20 Aug 2013
Edited: Roger Stafford
on 21 Aug 2013
n = 20;
d = 4;
c = zeros(sum([1,floor((d:n-1)/(d-1))]),d); % Allocate space for c
j = 0;
for k = 1:n-d+1
r = 1;
while k+r*(d-1) <= n
j = j+1;
c(j,:) = k:r:k+r*(d-1);
r = r+1;
end
end
The c array will be a 57 x 4 matrix of subsequence indices taken from 1:20.
c =
1 2 3 4
1 3 5 7
1 4 7 10
.....
17 18 19 20
If you replace the line "c(j,:) = k:r:k+r*(d-1);" by
c(j,:) = s(k:r:k+r*(d-1));
where s is your string, this will generate the subsequence of binary strings you are (apparently) asking for.
3 Comments
Roger Stafford
on 22 Aug 2013
Edited: Roger Stafford
on 22 Aug 2013
Here is a slightly shorter version:
n = 20;
d = 4;
f2 = cumsum([0,floor((n-1:-1:d-1)/(d-1))]);
f1 = f2(1:end-1)+1;
f2 = f2(2:end);
c = repmat(0:d-1,f2(end),1);
for k = 1:length(f1)
c(f1(k),:) = c(f1(k),:) + k;
c(f1(k):f2(k),:) = cumsum(c(f1(k):f2(k),:),1);
end
0 Comments
See Also
Categories
Find more on Gaussian Process Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!