extracting subsequences of binary string

3 views (last 30 days)
as would be the code for the following string have the next subsequences ?
STRING
1(1), 0(2), 1(3), 1(4), 0(5), 0(6), 1(7), 0(8), 0(9), 1(10), 1(11), 1(12), 1(13), 0(14), 0(15), 0(16), 1(17), 1(18), 1(19), 0(20)
SUBSEQUENCES
01: 1(01), 0(02), 1(03), 1(04) -> [1,0,1,1],
02: 1(01), 1(03), 0(05), 1(07) -> [1,1,0,1],
03: 1(01), 1(04), 1(07), 1(10) -> [1,1,1,1],
04: 1(01), 0(05), 0(09), 1(13) -> [1,0,0,1],
05: 1(01), 0(06), 1(11), 0(16) -> [1,0,1,0],
06: 1(01), 1(07), 1(13), 1(19) -> [1,1,1,1],
07: 0(02), 1(03), 1(04), 0(05) -> [0,1,1,0],
08: 0(02), 1(04), 0(06), 0(08) -> [0,1,0,0],
09: 0(02), 0(05), 0(08), 1(11) -> [0,0,0,1],
10: 0(02), 0(06), 1(10), 0(14) -> [0,0,1,0],
11: 0(02), 1(07), 1(12), 1(17) -> [0,1,1,1],
12: 0(02), 0(08), 0(14), 0(20) -> [0,0,0,0],
13: 1(03), 1(04), 0(05), 0(06) -> [1,1,0,0],
14: 1(03), 0(05), 1(07), 0(09) -> [1,0,1,0],
15: 1(03), 0(06), 0(09), 1(12) -> [1,0,0,1],
16: 1(03), 1(07), 1(11), 0(15) -> [1,1,1,0],
17: 1(03), 0(08), 1(13), 1(18) -> [1,0,1,1],
18: 1(04), 0(05), 0(06), 1(07) -> [1,0,0,1],
19: 1(04), 0(06), 0(08), 1(10) -> [1,0,0,1],
20: 1(04), 1(07), 1(10), 1(13) -> [1,1,1,1],
21: 1(04), 0(08), 1(12), 0(16) -> [1,0,1,0],
22: 1(04), 0(09), 0(14), 1(19) -> [1,0,0,1],
23: 0(05), 0(06), 1(07), 0(08) -> [0,0,1,0],
24: 0(05), 1(07), 0(09), 1(11) -> [0,1,0,1],
25: 0(05), 0(08), 1(11), 0(14) -> [0,0,1,0],
26: 0(05), 0(09), 1(13), 1(17) -> [0,0,1,1],
27: 0(05), 1(10), 0(15), 0(20) -> [0,1,0,0],
28: 0(06), 1(07), 0(08), 0(09) -> [0,1,0,0],
29: 0(06), 0(08), 1(10), 1(12) -> [0,0,1,1],
30: 0(06), 0(09), 1(12), 0(15) -> [0,0,1,0],
31: 0(06), 1(10), 0(14), 1(18) -> [0,1,0,1],
32: 1(07), 0(08), 0(09), 1(10) -> [1,0,0,1],
33: 1(07), 0(09), 1(11), 1(13) -> [1,0,1,1],
34: 1(07), 1(10), 1(13), 0(16) -> [1,1,1,0],
35: 1(07), 1(11), 0(15), 1(19) -> [1,1,0,1],
36: 0(08), 0(09), 1(10), 1(11) -> [0,0,1,1],
37: 0(08), 1(10), 1(12), 0(14) -> [0,1,1,0],
38: 0(08), 1(11), 0(14), 1(17) -> [0,1,0,1],
39: 0(08), 1(12), 0(16), 0(20) -> [0,1,0,0],
40: 0(09), 1(10), 1(11), 1(12) -> [0,1,1,1],
41: 0(09), 1(11), 1(13), 0(15) -> [0,1,1,0],
42: 0(09), 1(12), 0(15), 1(18) -> [0,1,0,1],
43: 1(10), 1(11), 1(12), 1(13) -> [1,1,1,1],
44: 1(10), 1(12), 0(14), 0(16) -> [1,1,0,0],
45: 1(10), 1(13), 0(16), 1(19) -> [1,1,0,1],
46: 1(11), 1(12), 1(13), 0(14) -> [1,1,1,0],
47: 1(11), 1(13), 0(15), 1(17) -> [1,1,0,1],
48: 1(11), 0(14), 1(17), 0(20) -> [1,0,1,0],
49: 1(12), 1(13), 0(14), 0(15) -> [1,1,0,0],
50: 1(12), 0(14), 0(16), 1(18) -> [1,0,0,1],
51: 1(13), 0(14), 0(15), 0(16) -> [1,0,0,0],
52: 1(13), 0(15), 1(17), 1(19) -> [1,0,1,1],
53: 0(14), 0(15), 0(16), 1(17) -> [0,0,0,1],
54: 0(14), 0(16), 1(18), 0(20) -> [0,0,1,0],
55: 0(15), 0(16), 1(17), 1(18) -> [0,0,1,1],
56: 0(16), 1(17), 1(18), 1(19) -> [0,1,1,1],
57: 1(17), 1(18), 1(19), 0(20) -> [1,1,1,0],

Accepted Answer

Andrei Bobrov
Andrei Bobrov on 21 Aug 2013
Edited: Andrei Bobrov on 21 Aug 2013
N = 20;
n = 4;
A = hankel(1:N-n+1,N-n+1:N);
k = 0:n-1;
idx = [];
for ii = 1:size(A,1)
p = A(ii,:);
while p(end,end) + k(end) <= N
p = [p;p(end,:)+k];
end
idx=[idx;p];
end
or
N = 20;
n = 4;
A = hankel(1:N-n+1,N-n+1:N);
k = 0:n-1;
c = ceil((N - A(:,end) + 1)/k(end));
i2 = cumsum(c);
i1 = i2 - c + 1;
idx = zeros(i2(end),n);
for jj = 1:N-n+1
idx(i1(jj):i2(jj),:) = bsxfun(@plus,A(jj,:),(0:c(jj)-1)'*k);
end
ADD
s = [1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0];
[j1,j2,j2] = unique(s(idx),'rows')
out = [j1, histc(j2,1:max(j2))/i2(end)]; % This row corrected
  8 Comments
FRANCISCO
FRANCISCO on 21 Aug 2013
sorry, I have not understood the code. This it does is calculate the number of times to repeat each subsequence?. It calculates the sub but if calculated occurrences each subsequence?. it?
Andrei Bobrov
Andrei Bobrov on 21 Aug 2013
Again correct last row in my code.

Sign in to comment.

More Answers (2)

Roger Stafford
Roger Stafford on 20 Aug 2013
Edited: Roger Stafford on 21 Aug 2013
n = 20;
d = 4;
c = zeros(sum([1,floor((d:n-1)/(d-1))]),d); % Allocate space for c
j = 0;
for k = 1:n-d+1
r = 1;
while k+r*(d-1) <= n
j = j+1;
c(j,:) = k:r:k+r*(d-1);
r = r+1;
end
end
The c array will be a 57 x 4 matrix of subsequence indices taken from 1:20.
c =
1 2 3 4
1 3 5 7
1 4 7 10
.....
17 18 19 20
If you replace the line "c(j,:) = k:r:k+r*(d-1);" by
c(j,:) = s(k:r:k+r*(d-1));
where s is your string, this will generate the subsequence of binary strings you are (apparently) asking for.
  3 Comments
FRANCISCO
FRANCISCO on 21 Aug 2013
thank you very much, that command should now be used to calculate the number of times to repeat each subsequence? is to calculate the probability by dividing the number of occurrences of that subsequence by the total number of subsequences. But I'm not sure which command used to count the number of occurrences of each subsequence
FRANCISCO
FRANCISCO on 19 Oct 2013
One question, as I can do with structure for you automatically calculate subsequences of length 4-20? ie, d = 4:20 but applying for so I said why not have the same dimension:
if true
% code
for d=4:20
c(d)=zeros(sum([1,floor((d:n-1)/(d-1))]),d);
j=0;
for k=1:n-d+1
r=1;
while k+r*(d-1)<=n
j=j+1;
c(j,:)=s(k:r:k+r*(d-1));% s es la cadena binaria / me da las subsecuencias
r=r+1;
end
end
end
end

Sign in to comment.


Roger Stafford
Roger Stafford on 22 Aug 2013
Edited: Roger Stafford on 22 Aug 2013
Here is a slightly shorter version:
n = 20;
d = 4;
f2 = cumsum([0,floor((n-1:-1:d-1)/(d-1))]);
f1 = f2(1:end-1)+1;
f2 = f2(2:end);
c = repmat(0:d-1,f2(end),1);
for k = 1:length(f1)
c(f1(k),:) = c(f1(k),:) + k;
c(f1(k):f2(k),:) = cumsum(c(f1(k):f2(k),:),1);
end

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!