curve fit the function
14 views (last 30 days)
Show older comments
I am trying to curve fit the following equation with parameters d, D, Ar, Tr each of them bounded in some range. The physical constants are: gamma = 26.76E7, n = 6.59E28, Ad = 2.099E-20
The equation is broken into several parts -
w1=2*pi*x
z1=(2*w1*d^2/D)^0.5
w2=2*w1
z2=(2*w2*d^2/D)^0.5
J1=((1+5*z1/8+z1^2/8)/(1+z1+z1^2/2+z1^3/6+z1^5/81+z1^6/648))
J2=((1+5*z2/8+z2^2/8)/(1+z2+z2^2/2+z2^3/6+z2^5/81+z2^6/648))
R1_diff = Ad*(J1+4*J2)/(d*D)
R1_rot = Ar*(Tr/(1+w1^2*Tr^2)+4*Tr/(1+(w2)^2*Tr^2))
R1_IL = R1_diff + R1_rot
finally
return R1_IL
#Experimental x and y data points
xData = [2.00E+07,1.42E+07,1.01E+07,7.16E+06,5.09E+06,3.61E+06,2.57E+06,1.82E+06, ...
1.29E+06,9.20E+05,6.53E+05,4.63E+05,3.29E+05,2.34E+05,1.66E+05,1.18E+05, ...
8.39E+04,5.96E+04,4.24E+04,3.00E+04];
yData = [1.90E+01,2.11E+01,2.38E+01,2.66E+01,2.97E+01,3.26E+01,3.46E+01,3.70E+01, ...
3.84E+01,4.00E+01,4.12E+01,4.22E+01,4.33E+01,4.39E+01,4.48E+01,4.54E+01, ...
4.65E+01,4.64E+01,4.67E+01,4.67E+01];
and the bound parameters are
d = [2.00E-10, 3.5E-10], D = [3.0E-12, 4.00E-12], Ar = [3.00E9, 3.8E9], Tr = [5.00E-19, 6.9E-10]ll
I need to get the parameter values that will minimize the function and curve fit the plot of R1 vs x in loglog scale.
1 Comment
Answers (0)
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!