Subsets of uncorrelated features
3 views (last 30 days)
Show older comments
Given a N by N correlation matrix of N features, how to find ALL subsets of pariwise uncorrelated features if we assume two features are uncorrelated if their correlation score is less than a threshold Alpha. There is no restriction on the number of features making the subsets. All features making a subset need to be pairwise uncorrelated.
0 Comments
Accepted Answer
Jeff Miller
on 12 Jul 2021
Edited: Jeff Miller
on 12 Jul 2021
N = 5;
R = rand(N); % We will ignore the lower triangular part of this array
rCutoff = 0.4;
% Make a cell array that holds all possible combinations of 2, 3, 4, ... features
combos = cell(0,0);
for i=2:N
iCombos = nchoosek(1:N,i);
for j=1:size(iCombos,1)
combos{end+1} = iCombos(j,:);
end
end
ncells = numel(combos);
% Check each cell to make sure that all of the pairwise correlations are
% less than the cutoff
qualifies = true(1,ncells);
for icell=1:ncells
features = combos{icell};
nfeatures = numel(features);
for ifeature=1:nfeatures-1
for jfeature=ifeature+1:nfeatures
iifeature = features(ifeature);
jjfeature = features(jfeature);
if abs(R(iifeature,jjfeature)) > rCutoff
qualifies(icell) = false;
end
end
end
end
5 Comments
Jeff Miller
on 13 Jul 2021
You may well be right, that but "if sum" line is cognitively impenetrable to me. :)
Thanks for accepting my answer.
More Answers (2)
Ive J
on 11 Jul 2021
Edited: Ive J
on 12 Jul 2021
Let R be the pairwise correlation matrix:
N = 10;
R = rand(N);
R(logical(eye(N))) = 1;
for i = 1:size(R, 1) - 1
for j = i+1:size(R, 1)
R(j, i) = R(i, j);
end
end
disp(R)
cutoff = 0.4; % independent features
idx = R < cutoff;
idx = triu(idx); % R(i, j) == R(j, i) in pairwise correlation matrix
features = "feature" + (1:N); % feature names
% there may be a simpler way to do this
indepFeatures = [];
for i = 1:N
indepFeatures = [indepFeatures, arrayfun(@(x)[x, features(i)], features(idx(i, :)), 'uni', false)];
end
indepFeatures = vertcat(indepFeatures{:});
% find all cliques of this set
nodes = zeros(size(indepFeatures, 1), 1);
[~, nodes(:, 1)] = ismember(indepFeatures(:, 1), features);
[~, nodes(:, 2)] = ismember(indepFeatures(:, 2), features);
G = graph(nodes(:, 1), nodes(:, 2));
M = maximalCliques(adjacency(G));
indepSets = cell(size(M, 2), 1);
for i = 1:numel(indepSets)
indepSets{i} = features(M(:, i) ~= 0);
end
indepSets(cellfun(@numel, indepSets) < 2) = []; % this can be further unified with indepFeatures
12 Comments
Image Analyst
on 11 Jul 2021
Would stepwise regression be of any help?
Otherwise, just make an N by N table of correlation coefficients by corelating every feature with every other feature.
0 Comments
See Also
Categories
Find more on Descriptive Statistics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!