Query about weight filter size in AlexNet
1 view (last 30 days)
Show older comments
deepika s
on 14 Aug 2021
Commented: deepika s
on 18 Aug 2021
I have analysed the pretrained alexnet model. I have attached the screen shot. In that conv2 row, weights are given as 5*5*48*256. what is 48 here?. As per my knowledge, 48 represents the previous layer (number of channels in previous layer). but number of previous layer is 96 after pool1. likewise, same doubt in conv4 and conv5.
Can anyone explain this question?
0 Comments
Accepted Answer
Harikrishnan Balachandran Nair
on 17 Aug 2021
The reason that the third dimension of weights in the mentioned layer is not the same as the number of channels in input is that the corresponding layer in AlexNet perform grouped Convolution. You can refer to the following Documentation to learn more about AlexNet : https://www.mathworks.com/help/deeplearning/ref/alexnet.html.
More Answers (0)
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!