Problem 52819. Easy Sequences 30: Nearly Pythagorean Triangles
A Nearly Pythagorean Triangle (abbreviated as "NPT'), is an integer-sided triangle whose square of the longest side, which we will call as its 'hypotenuse', is 1 more than the sum of square of the shorter sides. This means that if c is the hypotenuse and a and b are the shorter sides, , satisfies the following equation:
where:
The smallest is the triangle , with . Other examples are , , and .
Unfortunately, unlike Pythagorean Triangles, a 'closed formula' for generating all possible 's, has not yet been discovered, at the time of this writing. For this exercise, we will be dealing with 's with a known ratio of the shorter sides: .
Given the value of r, find the with the second smallest perimeter. For example for , that is , the smallest perimeter is , while the second smallest perimeter is , for the with dimensions . Please present your output as vector , where a is the smallest side of the , and c is the hypotenuse.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers19
Suggested Problems
-
3007 Solvers
-
8878 Solvers
-
Golomb's self-describing sequence (based on Euler 341)
158 Solvers
-
1971 Solvers
-
Easy Sequences 10: Sum of Cumsums of Fibonacci Sequence
31 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!