Problem 54680. Determine whether a number is practical
A number n is practical if all smaller numbers can be written as a sum of the proper divisors of n. The number 24 is practical because its proper divisors are 1, 2, 3, 4, 6, 8, and 12 and for example
5 = 4+1, 7 = 4+3, 9 = 6+3, 10 = 8+2, 11 = 8+3, 13 = 12+1, 14 = 12+2, 15 = 12+3, 16 = 12+4,
17 = 12+4+1, 18 = 12+6, 19 = 12+3+4, 20 = 12+8, 21 = 12+8+1, 22 = 12+8+2, 23 = 12+8+3
However, 23 is not practical because its only proper divisor, 1, cannot be repeated in the sum.
Write a function to determine whether a number is practical.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers6
Suggested Problems
-
Back to basics 9 - Indexed References
453 Solvers
-
Calculate the Hamming distance between two strings
336 Solvers
-
Circular Primes (based on Project Euler, problem 35)
639 Solvers
-
380 Solvers
-
Angle Between Analog Clock Hands
109 Solvers
More from this Author315
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!