Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
30:58 Video length is 30:58.
  • Description
  • Related Resources

Rapid Algorithm Development for Planning and Control of an Actively Articulated Wheel-on-Leg Robot

William Reid, Australian Centre for Field Robotics

This presentation summarises the development of guidance, navigation, and control (GNC) software for an actively articulated wheel-on-leg rover. The Mars Analogue Multi-Mode Traverse Hybrid (MAMMOTH) quadruped is an 85 kg robot capable of changing its footprint, clambering over obstacles and reconfiguring its posture to meet sensing and traversability objectives. Due to the complexity of the GNC problem for this vehicle, a technique for efficient software development is required. To meet this requirement, Model-Based Design has been employed to rapidly develop and validate individual GNC algorithms within the executable prototype framework of the software.

The major software components discussed include the actuator and sensor interfaces, the kinematic controller used to independently control 11 degrees of freedom, the fusion of various localisation and mapping schemes, and the motion planner used to plan efficient paths through the rover’s complex configuration space.

An RGB-D Asus Xtion sensor used for simultaneous localisation and mapping (SLAM) is implemented using the Robotics Operating System (ROS), and is interfaced to with Robotics System Toolbox™. Results from various traverses in which the rover performs SLAM are discussed. Additionally, the fusion of inertial measurement unit data, wheel odometry, and laser range-finder data into the localisation scheme are summarised.

A kinematic model of the MAMMOTH rover is formulated using recursive kinematic propagation. The model expresses the relationships between the independently and dependently driven points of actuation. Demonstrations of the rover driving its 11 degrees of freedom in both simulation and on a Mars analogue terrain are provided.

The final topic discussed is the motion planning scheme used. The Open Motion Planning Library (OMPL) is used with kinematics C++ code generated in MATLAB to produce feasible and efficient paths. Motion planning is demonstrated in a variety of simulated challenging planetary analogue environments.

MATLAB® and Simulink® have been used to facilitate the integration and validation of these individual components within software-in-the-loop, hardware-in-the-loop, and fully deployed development environments. An example workflow of the development of an actively articulated suspension technique to keep a constant body pose as the rover traverses rough terrain is summarised to highlight how each development environment is utilised.

The resulting software has enabled the demonstration of the full capabilities of a novel planetary rover exploration platform. Results from autonomous actively articulated suspension trials and autonomous digging missions are presented. The central contribution of this work is a demonstration of a rapid software development workflow for a complex robotic system.

Recorded: 24 May 2016

Related Products

  • Simulink
  • MATLAB
  • Robotics System Toolbox

Learn More

View slides

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper
Related Information
Request Trial

Feedback

Featured Product

Simulink

  • Request Trial
  • Get Pricing

Up Next:

10:58
Simulink for Signal Processing Algorithm Development

Related Videos:

21:50
Customizing Modeling Guideline Checks Within a Continuous...
16:56
Development of the Variable Valve Control for the...
22:34
Implementation of Algorithm for Extension of Unambiguous...
45:02
Mobile Robot Simulation for Collision Avoidance with...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation