Main Content

cassegrain

Create Cassegrain antenna

Since R2019b

Description

The cassegrain object creates a Cassegrain antenna. A Cassegrain antenna is a parabolic antenna using a dual reflector system. In this antenna, the feed antenna is mounted at or behind the surface of the main parabolic reflector and aimed at the secondary reflector. For more information see, Architecture of Cassegrain Antenna.

Cassegrain antennas are used in applications such as satellite ground-based systems.

Creation

Description

example

ant = cassegrain creates a conical horn fed Cassegrain antenna with a resonating frequency of 18.51 GHz. This antenna gives maximum gain when operated at 18 GHz.

ant = cassegrain(Name=Value) creates a Cassegrain antenna, with additional Properties specified by one or more name–value arguments. Name is the property name and Value is the corresponding value. You can specify several name-value arguments in any order as Name1= Value1, ..., NameN=ValueN. Properties not specified retain their default values.

For example, ant = cassegrain(Radius=[0.4 0.22]) creates a Cassegrain antenna with the main reflector with radius 0.4 m and the secondary reflector with radius 0.22 m.

Properties

expand all

Exciter antenna or array type, specified as an antenna object, an array object, measured pattern data of an antenna, or an empty array. Except for reflector and cavity antenna elements, you can use any Antenna Toolbox™ antenna or array element as an exciter. To create the reflector backing structure without the exciter, specify this property as an empty array.

Example: dipole

Example: linearArray(Element=patchMicrostrip)

Example: measuredAntenna

Example: []

Radius of the main and subreflector, specified as a two-element vector with each element unit in meters. The first element specifies the radius of the main reflector, and the second element specifies the radius of the subreflector.

Example: [0.4 0.2]

Data Types: double

Focal length of the main and sub-reflector, specified as a two-element vector with each element unit in meters. The first element specifies the focal length of the main reflector and the second element specifies the focal length of the sub-reflector.

Example: [0.35 0.2]

Data Types: double

Lumped elements added to the antenna feed, specified as a lumped element object. You can add a load anywhere on the surface of the antenna. By default, the load is at the feed. For more information, see lumpedElement.

Example: Load=lumpedelement. lumpedelement is the object for the load created using lumpedElement.

Example: lumpedElement(Impedance=75)

Tilt angle of the antenna in degrees, specified as a scalar or vector. For more information, see Rotate Antennas and Arrays.

Example: 90

Example: Tilt=[90 90],TiltAxis=[0 1 0;0 1 1] tilts the antenna at 90 degrees about the two axes defined by the vectors.

Data Types: double

Tilt axis of the antenna, specified as one of these values:

  • Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the vector starts at the origin and lies along the specified points on the x-, y-, and z-axes.

  • Two points in space, specified as a 2-by-3 matrix corresponding to two three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points.

  • "x", "y", or "z" to describe a rotation about the x-, y-, or z-axis, respectively.

For more information, see Rotate Antennas and Arrays.

Example: [0 1 0]

Example: [0 0 0;0 1 0]

Example: "Z"

Data Types: double | string

Solver for antenna analysis, specified as a string. Default solver is "MoM-PO"(Method of Moments-Physical Optics hybrid). Other supported solvers are: "MoM" (Method of Moments), "PO" (Physical optics) or "FMM" (Fast Multipole Method).

Example: SolverType="MoM"

Data Types: string

Object Functions

showDisplay antenna, array structures, shapes, or platform
solverAccess FMM solver for electromagnetic analysis
axialRatioAxial ratio of antenna
beamwidthBeamwidth of antenna
chargeCharge distribution on antenna or array surface
currentCurrent distribution on antenna or array surface
designDesign prototype antenna or arrays for resonance around specified frequency or create AI-based antenna from antenna catalog objects
EHfieldsElectric and magnetic fields of antennas or embedded electric and magnetic fields of antenna element in arrays
impedanceInput impedance of antenna or scan impedance of array
meshMesh properties of metal, dielectric antenna, or array structure
meshconfigChange meshing mode of antenna, array, custom antenna, custom array, or custom geometry
optimizeOptimize antenna or array using SADEA optimizer
patternPlot radiation pattern and phase of antenna or array or embedded pattern of antenna element in array
patternAzimuthAzimuth plane radiation pattern of antenna or array
patternElevationElevation plane radiation pattern of antenna or array
rcsCalculate and plot radar cross section (RCS) of platform, antenna, or array
returnLossReturn loss of antenna or scan return loss of array
sparametersCalculate S-parameters for antennas and antenna arrays
vswrVoltage standing wave ratio (VSWR) of antenna or array element

Examples

collapse all

Create and view a Cassegrain antenna.

ant = cassegrain
ant = 
  cassegrain with properties:

        Exciter: [1x1 hornConical]
         Radius: [0.3175 0.0330]
    FocalLength: [0.2536 0.1416]
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]
     SolverType: 'MoM-PO'

show(ant)

Figure contains an axes object. The axes object with title cassegrain antenna element, xlabel x (mm), ylabel y (mm) contains 7 objects of type patch, surface. These objects represent PEC, feed.

Plot the radiation pattern of the antenna at 18.3 GHz.

mesh(ant,maxEdgeLength=14e-3)

Figure contains an axes object and an object of type uicontrol. The axes object with title Metal mesh, xlabel x (m), ylabel y (m) contains 2 objects of type patch, surface. These objects represent PEC, feed.

figure;
pattern(ant,18.3e9)

Figure contains an axes object and other objects of type uicontrol. The axes object contains 7 objects of type patch, surface.

Create a rectangular array of crossed dipole antennas.

e = dipoleCrossed(Tilt=90,TiltAxis=[0 1 0]);
arr = rectangularArray(Element=e,Rowspacing=0.03,ColumnSpacing=0.03);

Use the rectangular array arr to excite a Cassegrain antenna.

ant = cassegrain(Exciter=arr)
ant = 
  cassegrain with properties:

        Exciter: [1x1 rectangularArray]
         Radius: [0.3175 0.0330]
    FocalLength: [0.2536 0.1416]
           Tilt: 0
       TiltAxis: [1 0 0]
           Load: [1x1 lumpedElement]
     SolverType: 'MoM-PO'

show(ant)

Figure contains an axes object. The axes object with title cassegrain antenna element, xlabel x (mm), ylabel y (mm) contains 21 objects of type patch, surface. These objects represent PEC, feed.

More About

expand all

References

[1] Dandu, Obulesu. "Optimized Design of Axillary Symmetric Cassegrain Reflector Antenna Using Iterative Local Search Algorithm"

[2] Balanis, C.A. Antenna Theory: Analysis and Design. 3rd Ed. New York: Wiley, 2005.

Version History

Introduced in R2019b