fit pressure temperature data in antoine equation using the command lsqnonlin
14 views (last 30 days)
Show older comments
I want to fit pressure temperature data in antoine equation using the command lsqnonlin.The objective function is the minimization of the data available and data computed using the equation.The parameters of the equation are estimated after the minimization is done using this command.
Pressure=[1 5 10 20 40 60 100 200 400 760]
temp=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5]
Antoine eqaution:
ln P=A+B/(T+C)
where A,B and C are the parameters to be estimated. I am not able to write the function file properly.When i call the function file to the command lsqnonlin ,it shows error. help on the use of this command with the mention of the function file
3 Comments
Accepted Answer
Star Strider
on 12 Jun 2014
First, lsqnonlin isn’t primarily intended for curve fitting. The lsqcurvefit function is, so use it instead.
I restated your ‘Antione’ function as a more convenient ‘anonymous function’, and used lsqcurvefit:
x=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5];
y=[1 5 10 20 40 60 100 200 400 760];
Antoine = @(c0,x) exp(c0(1)+(c0(2)./(x+c0(3))));
c0 = ones(3,1);
C0 = lsqcurvefit(Antoine, c0, x, y)
to produce:
C0 =
5.1897e+000
3.8765e+000
1.9997e+000
7 Comments
Star Strider
on 13 Jun 2014
Again, my pleasure!
I still recommend lsqcurvefit for the sort of study you’re doing. Easier.
More Answers (2)
Carsten
on 7 Jul 2014
Edited: Carsten
on 7 Jul 2014
I don't think that this is the solution for the problem. If i use the C0 values to calculate the antoine equation, it doesn't fit the given data.
x=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5];
y=[1 5 10 20 40 60 100 200 400 760];
Antoine = @(c0,x) exp(c0(1)+(c0(2)./(x+c0(3))));
c0 = ones(3,1);
C0 = lsqcurvefit(Antoine, c0, x, y)
ant=exp(C0(1)+(C0(2)./(x+C0(3))));
figure
hold on
grid
set(gca,'FontSize',14)
plot(x,y,'b');
plot(x,ant,'r');

0 Comments
Luiz Augusto Meleiro
on 21 Sep 2022
This method is highly sensitive to initial guess.
Try this:
A = 10;
B = -2000;
C = 200;
c0 = [ A; B; C ];
1 Comment
Star Strider
on 21 Sep 2022
‘This method is highly sensitive to initial guess.’
That is a characteristic of all nonlinear parameter estimation techniques. In the eight years since this appeared, I now routinely use the ga and similar approaches in the Global Optimization Toolbox to determine the best parameter estimates. It helps to know the approximate parameter magnitudes and ranges at the outset to be certain the estimated parameters are realistic.
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!