Integrating a 2nd order ODE

2 views (last 30 days)
PetronasAMG
PetronasAMG on 16 Oct 2021
Answered: Star Strider on 17 Oct 2021
I am given an equation,
d^2y/dx^2 + q(x) = 0
x ranges from 0 to 1 and y(0) = 1 and y(L) = 1.5
where L = 1
and q(x) = 2*cos((pi*x)/L)
here is what I have
function dydx = yfunc (x,y)
x = linspace(0,1,30);
L = 1;
for i = 1:length(x)
qx(i)= 2*cos((pi*x(i))/L);
end
dydx= -qx;
end
%main script
[x,y] = ode45(@yfunc,x,[1 1.5]);
I am running into an error stating Dimensions of arrays being concatenated are not consistent. Could you please help me?

Accepted Answer

Star Strider
Star Strider on 17 Oct 2021
This is a boundary value problem. Use bvp4c to solve it.
syms y(x) x L Y
q(x) = 2*cos(pi*x/L);
Dy = diff(y);
D2y = diff(Dy);
ODE = D2y + q
ODE(x) = 
[VF,Subs] = odeToVectorField(ODE)
VF = 
Subs = 
bvpfcn = matlabFunction(VF, 'Vars',{x,Y,L})
bvpfcn = function_handle with value:
@(x,Y,L)[Y(2);cos((x.*pi)./L).*-2.0]
I solved it completely, however I do not want to deprive you of the same feeling of accomplishment, so I leave the rest to you. It is a straightforward solution. Follow the examples in the documentation I linked to.
.

More Answers (0)

Categories

Find more on Programming in Help Center and File Exchange

Tags

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!