how to get tf answer for this problem?

3 views (last 30 days)
a=[40]
a = 40
b=[0.05 1]
b = 1×2
0.0500 1.0000
c=[1]
c = 1
d=[0.5 1]
d = 1×2
0.5000 1.0000
e=[0.8]
e = 0.8000
f=[1 1]
f = 1×2
1 1
g=[0.1]
g = 0.1000
h=[0.04 1]
h = 1×2
0.0400 1.0000
T1=tf(a,b)
T1 = 40 ---------- 0.05 s + 1 Continuous-time transfer function.
T2=tf(c,d)
T2 = 1 --------- 0.5 s + 1 Continuous-time transfer function.
T3=tf(e,f)
T3 = 0.8 ----- s + 1 Continuous-time transfer function.
T4=tf(g,h)
T4 = 0.1 ---------- 0.04 s + 1 Continuous-time transfer function.
A=(T1*T2*T3)
A = 32 ---------------------------------- 0.025 s^3 + 0.575 s^2 + 1.55 s + 1 Continuous-time transfer function.
B=(T1*T2*T4)
B = 4 ---------------------------------- 0.001 s^3 + 0.047 s^2 + 0.59 s + 1 Continuous-time transfer function.
C=1+B+A
C = 2.5e-05 s^6 + 0.00175 s^5 + 0.04333 s^4 + 0.5701 s^3 + 5.341 s^2 + 27.22 s + 37 ------------------------------------------------------------------------------- 2.5e-05 s^6 + 0.00175 s^5 + 0.04333 s^4 + 0.4381 s^3 + 1.537 s^2 + 2.14 s + 1 Continuous-time transfer function.
A/C
ans = 0.0008 s^6 + 0.056 s^5 + 1.386 s^4 + 14.02 s^3 + 49.17 s^2 + 68.48 s + 32 ------------------------------------------------------------------------------------------------------------------------ 6.25e-07 s^9 + 5.813e-05 s^8 + 0.002128 s^7 + 0.0419 s^6 + 0.5302 s^5 + 4.678 s^4 + 25.42 s^3 + 68.81 s^2 + 84.57 s + 37 Continuous-time transfer function.
i want A to be like this 32/((1+.05s)(1+0.5s)(1+s)) is this possible

Accepted Answer

Star Strider
Star Strider on 12 Jan 2022
Almost.
Use the zpk function to do the format transformation.
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3)
A = 32 ---------------------------------- 0.025 s^3 + 0.575 s^2 + 1.55 s + 1 Continuous-time transfer function.
Azpk = zpk(A)
Azpk = 1280 ------------------ (s+20) (s+2) (s+1) Continuous-time zero/pole/gain model.
B=(T1*T2*T4)
B = 4 ---------------------------------- 0.001 s^3 + 0.047 s^2 + 0.59 s + 1 Continuous-time transfer function.
Bzpk = zpk(B)
Bzpk = 4000 ------------------- (s+25) (s+20) (s+2) Continuous-time zero/pole/gain model.
C=1+B+A
C = 2.5e-05 s^6 + 0.00175 s^5 + 0.04333 s^4 + 0.5701 s^3 + 5.341 s^2 + 27.22 s + 37 ------------------------------------------------------------------------------- 2.5e-05 s^6 + 0.00175 s^5 + 0.04333 s^4 + 0.4381 s^3 + 1.537 s^2 + 2.14 s + 1 Continuous-time transfer function.
Czpk = zpk(C)
Czpk = (s+34.37) (s+20) (s+8.593) (s+2) (s^2 + 5.036s + 125.3) ------------------------------------------------------- (s+25) (s+20)^2 (s+2)^2 (s+1) Continuous-time zero/pole/gain model.
AC = A/C
AC = 0.0008 s^6 + 0.056 s^5 + 1.386 s^4 + 14.02 s^3 + 49.17 s^2 + 68.48 s + 32 ------------------------------------------------------------------------------------------------------------------------ 6.25e-07 s^9 + 5.813e-05 s^8 + 0.002128 s^7 + 0.0419 s^6 + 0.5302 s^5 + 4.678 s^4 + 25.42 s^3 + 68.81 s^2 + 84.57 s + 37 Continuous-time transfer function.
ACzpk = zpk(AC)
ACzpk = 1280 (s+25) (s+20)^2 (s+2)^2 (s+1) ----------------------------------------------------------------- (s+34.37) (s+20)^2 (s+8.593) (s+2)^2 (s+1) (s^2 + 5.036s + 125.3) Continuous-time zero/pole/gain model.
Amr = minreal(A)
Amr = 1280 ------------------------ s^3 + 23 s^2 + 62 s + 40 Continuous-time transfer function.
Amrzpk = zpk(Amr)
Amrzpk = 1280 ------------------ (s+20) (s+2) (s+1) Continuous-time zero/pole/gain model.
Bmr = minreal(B)
Bmr = 4000 --------------------------- s^3 + 47 s^2 + 590 s + 1000 Continuous-time transfer function.
Bmrzpk = zpk(Bmr)
Bmrzpk = 4000 ------------------- (s+25) (s+20) (s+2) Continuous-time zero/pole/gain model.
Cmr = minreal(C)
Cmr = s^5 + 50 s^4 + 733 s^3 + 8144 s^2 + 5.074e04 s + 7.4e04 ------------------------------------------------------- s^5 + 50 s^4 + 733 s^3 + 2864 s^2 + 4180 s + 2000 Continuous-time transfer function.
Cmrzpk = zpk(Cmr)
Cmrzpk = (s+34.37) (s+8.593) (s+2) (s^2 + 5.036s + 125.3) ------------------------------------------------ (s+25) (s+20) (s+2)^2 (s+1) Continuous-time zero/pole/gain model.
ACmr = minreal(AC)
ACmr = 1280 s^3 + 8.32e04 s^2 + 1.792e06 s + 1.28e07 -------------------------------------------------------------------------- s^6 + 88 s^5 + 2957 s^4 + 5.155e04 s^3 + 566600 s^2 + 4.228e06 s + 1.48e07 Continuous-time transfer function.
ACmrzpk = zpk(ACmr)
ACmrzpk = 1280 (s+25) (s+20)^2 --------------------------------------------------- (s+34.37) (s+20)^2 (s+8.593) (s^2 + 5.036s + 125.3) Continuous-time zero/pole/gain model.
.
  2 Comments
arian hoseini
arian hoseini on 12 Jan 2022
can we do something about (s+20)^2
the answer i need is this1280(s + 25)/( s 4 + 48s 3 + 637s 2 + 6870s + 37000)
by the way thank u ...ur solution is perfect
Star Strider
Star Strider on 12 Jan 2022
My pleasure!
The form you need is not an option in any of the representations I looked through. The zpk representation is as close as it is possible to get. Dividing the transfer function by (s+20)^2 changes nothing about it.
If you absolutely must have that representation, you will need to write it yourself, or possibly use the Symbolic Math Toolbox. Special representations such as that are simply not possible in the Control System Toolbox.
s = tf('s');
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3);
% Azpk = zpk(A);
B=(T1*T2*T4);
% Bzpk = zpk(B)
C=1+B+A;
% Czpk = zpk(C)
AC = A/C;
% ACzpk = zpk(AC)
% Amr = minreal(A)
% Amrzpk = zpk(Amr)
% Bmr = minreal(B)
% Bmrzpk = zpk(Bmr)
% Cmr = minreal(C)
% Cmrzpk = zpk(Cmr)
ACmr = minreal(AC);
ACmrzpk = zpk(ACmr)
ACmrzpk = 1280 (s+25) (s+20)^2 --------------------------------------------------- (s+34.37) (s+20)^2 (s+8.593) (s^2 + 5.036s + 125.3) Continuous-time zero/pole/gain model.
.

Sign in to comment.

More Answers (0)

Categories

Find more on Startup and Shutdown in Help Center and File Exchange

Products


Release

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!