Assigning values to defined symbolic variables afterwards

43 views (last 30 days)
syms x ar la
C_I=[((1+(4/3)*ar*sin(x))/8)*la,0,0,0;0,((1-(4/3)*ar*cos(x))/8)*la,0,0; 0,0,((1-(4/3)*ar*sin(x))/8)*la,0; 0,0,0,((1+(4/3)*ar*cos(x))/8)*la];
Lb=[1,-1,cos(x),sin(x);1,1,sin(x),-cos(x);1,-1,-cos(x),-sin(x);1,1,-sin(x),cos(x)];
Lb_1=inv(Lb);
Cm=Lb_1*(2*(diff(Lb,x))+(C_I*Lb));
How can you calculate the Cm matris while x=0 ? What code should I write next?

Accepted Answer

Star Strider
Star Strider on 19 Feb 2022
Use the subs funciton (and optionally simplify).
Try this —
syms x ar la
sympref('AbbreviateOutput',false);
C_I=[((1+(4/3)*ar*sin(x))/8)*la,0,0,0;0,((1-(4/3)*ar*cos(x))/8)*la,0,0; 0,0,((1-(4/3)*ar*sin(x))/8)*la,0; 0,0,0,((1+(4/3)*ar*cos(x))/8)*la]
C_I = 
Lb=[1,-1,cos(x),sin(x);1,1,sin(x),-cos(x);1,-1,-cos(x),-sin(x);1,1,-sin(x),cos(x)]
Lb = 
Lb_1=inv(Lb)
Lb_1 = 
Cm=Lb_1*(2*(diff(Lb,x))+(C_I*Lb))
Cm = 
Cm_x0 = subs(Cm,{x},{0}) % Substitute 0 for 'x'
Cm_x0 = 
Cm_x0 = simplify(Cm_x0, 500) % Simplified
Cm_x0 = 
.
  6 Comments
Star Strider
Star Strider on 19 Feb 2022
The μ and γ are new.
How are they defined, especially in the context of the other variables?

Sign in to comment.

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Products


Release

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!