How I can give condition & plot the solution of this differential equation. . . . . . . Please Guide

1 view (last 30 days)
This is the equation for which
boundery condition are
theta(z=0)=0 degree
theta(z=h)=90 degree
where h=6
z=0:h
how to give condition here
e=8.85*10^-12
dele=11
E=1
k11=9
k33=9
k22=11
syms theta(z) z dtheta
dtheta=diff(theta,z)
d2theta=diff(theta,z,2)
eqn=d2theta+((k33-k11)*cos(theta)*sin(theta))*(dtheta)^2*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))+e*dele*E^2*cos(theta)*sin(theta)*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))
cond(theta(0)==0, theta(pi/2)==0)
thetaSol = dsolve(eqn,cond)
thetaSol = unique(simplify(thetaSol))
fplot(thetaSol)
  7 Comments

Sign in to comment.

Answers (3)

Torsten
Torsten on 22 Jul 2022
Edited: Torsten on 22 Jul 2022
dsolve doesn't succeed. Thus use a numerical solver (bvp4c) to solve your equation.
syms A theta(z)
dtheta=diff(theta,z)
dtheta(z) = 
d2theta=diff(theta,z,2)
d2theta(z) = 
eqn = d2theta + A/2*sin(2*theta)==0;
cond = [theta(0)==0, theta(6)==pi/2];
thetaSol = dsolve(eqn,cond)
Warning: Unable to find symbolic solution.
thetaSol = [ empty sym ]
  7 Comments
DEEPAK KARARWAL
DEEPAK KARARWAL on 28 Jul 2022
yes sir, but what I want, is to give such a boundery condition at theta(z)=(__) such that I will get varying angle from 0 to 90 degree as we increase the value of E, where E is electric field and contained in the expression of A.
Torsten
Torsten on 28 Jul 2022
Not clear what you mean.
The boundary value for theta at z = 6 can be set by writing it in the variable "bv" of my code above. Experiment with it.

Sign in to comment.


Sam Chak
Sam Chak on 22 Jul 2022
Giiven the parameters, it seems that if you select initial values and , the boundary values are satisfied.
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
f = @(t, x) [x(2); ...
- (A/2)*sin(2*x(1))];
tspan = [0 6];
initc = [0 pi/12]; % initial condition
[t, x] = ode45(f, tspan, initc);
plot(t, x(:,1), 'linewidth', 1.5), grid on, xlabel('t'), ylabel('\theta')
x(end,1) % π/2 at θ(6)
ans = 1.5708

MOSLI KARIM
MOSLI KARIM on 16 Feb 2023
%%
function answer
clc
clear all
close all
global A
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
solinit=bvpinit(linspace(0,6),[0;pi/12])
sol=bvp4c(@fct,@bc,solinit)
figure(1)
plot(sol.x,sol.y(1,:))
function dxdy=fct(x,y)
dxdy=[y(2); -(A/2)*sin(2*y(1))];
end
function res=bc(ya,yb)
res=[ya(1);yb(1)-90]
end
end

Categories

Find more on Particle & Nuclear Physics in Help Center and File Exchange

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!