how can I find the intersection of two surface
3 views (last 30 days)
Show older comments
Hi, I wrote the code below to find the intersection of two surfaces "cdot: and "ctdot", but it has an error : Z must be a matrix, not a scalar or vector.
Could you please tell me how solve it, thanks for any help.
vplc=0.16;
delta=0.1;
Ktau=0.045;
Kc=0.1;
K=0.0075;
Kp=0.15;
gamma=5.5;
Kb=0.4;
alpha0=delta*6.81e-6/(0.002);
alpha1=delta*2.27e-5/(0.002);
Ke=7;
Vs=0.002;
Ks=0.1;
Kf=0.18;
kplc=0.055;
ki=2;
tau_max=0.176;
Vss=0.044;
A=(-(Vss.*c.^2)./(Ks.^2))+((Vs.*K.*gamma.^2.*ct.^2)./(Ks.^2))+alpha0+alpha1.*((Ke.^4)./(Ke.^4+(gamma.*ct).^4));
p=(vplc.*c.^2./(c.^2+kplc.^2))./ki;
h=(-(0.4.*A.*((Kc.^4).*(Kp.^2))./((p.^2.*c.^2.*gamma.*ct.*Kf))));
G1=alpha0+(alpha1.*Ke.^4./((gamma.*ct).^4+Ke.^4));
G2=((1-h)./tau_max).*c.^4;
Fc=(4.*gamma.*Kf).*((c.^3.*p.^2.*h.*ct)./(Kb.*Kp.^2.*Ktau.^4))-(2.*Vss.*c./Ks.^2);
Fct=((gamma.*Kf.*(c.^4).*(p.^2).*h)./(Kb.*Kp.^2.*Ktau.^4))+((Vs.*K.*gamma.^2)./(Ks.^2))-((4.*gamma.^4.*ct.^3.*alpha1.*Ke.^4)./(Ke.^4+(gamma.*ct).^4).^2);
Fh=(gamma.*Kf.*c.^4.*p.^2.*ct)./(Kb.*Kp.^2.*Ktau.^4);
cdot=@(ct,c)(((gamma.*Kf.*(c.^4).*(p.^2).*h)./(Kb.*Kp.^2.*Ktau.^4))+((Vs.*K.*gamma.^2)./(Ks.^2))-((4.*gamma.^4.*ct.^3.*alpha1.*Ke.^4)./(Ke.^4+(gamma.*ct).^4).^2)).*(alpha0+(alpha1.*Ke.^4./((gamma.*ct).^4+Ke.^4)))+((gamma.*Kf.*c.^4.*p.^2.*ct)./(Kb.*Kp.^2.*Ktau.^4)).*(((1-h)./tau_max).*c.^4);
ctdot=@(ct,c)(-(alpha0+(alpha1.*Ke.^4./((gamma.*ct).^4+Ke.^4))).*((4.*gamma.*Kf).*((c.^3.*p.^2.*h.*ct)./(Kb.*Kp.^2.*Ktau.^4))-(2.*Vss.*c./Ks.^2)));
ct = 0:.1:2.5;
c = 0:.1:2.5;
[Ct,C] = meshgrid(ct,c);
figure
surf(Ct,C,cdot(Ct,C)-ctdot(Ct,C))
hold on
contour3(C,Ct,cdot(Ct,C)-ctdot(Ct,C), [0 0], '-r', 'LineWidth',2)
0 Comments
Accepted Answer
Star Strider
on 20 Sep 2022
Edited: Star Strider
on 20 Sep 2022
MATLAB is case-sensitive so ‘ct’ ~= ‘Ct’ (and so for the others) in the ‘cdot’ and ‘ctdot’ calls.
I would like to run this to demonstrate that, however ‘c’ is nowhere to be found.
vplc=0.16;
delta=0.1;
Ktau=0.045;
Kc=0.1;
K=0.0075;
Kp=0.15;
gamma=5.5;
Kb=0.4;
vss=0.044;
alpha0=delta*6.81e-6/(0.002);
alpha1=delta*2.27e-5/(0.002);
Ke=7;
Vs=0.002;
Ks=0.1;
Kf=0.18;
kplc=0.055;
ki=2;
tau_max=0.176;
Vss=0.044;
ct = 0:.1:2.5;
c = 0:.1:2.5;
A=(-(vss.*c.^2)./(ks.^2))+((Vs.*K.*gamma.^2.*ct.^2)./(ks.^2))+alpha0+alpha1.*((Ke.^4)./(Ke.^4+(gamma.*ct).^4));
p=(vplc.*c.^2./(c.^2+kplc.^2))./ki;
h=(-(0.4.*A.*((Kc.^4).*(Kp.^2))./((p.^2.*c.^2.*gamma.*ct.*Kf))));
G1=alpha0+(alpha1.*Ke.^4./((gamma.*ct).^4+Ke.^4));
G2=((1-h)./tau_max).*c.^4;
Fc=(4.*gamma.*Kf).*((c.^3.*p.^2.*h.*ct)./(Kb.*Kp.^2.*Ktau.^4))-(2.*Vss.*c./Ks.^2);
Fct=((gamma.*Kf.*(c.^4).*(p.^2).*h)./(Kb.*Kp.^2.*Ktau.^4))+((Vs.*K.*gamma.^2)./(Ks.^2))-((4.*gamma.^4.*ct.^3.*alpha1.*Ke.^4)./(Ke.^4+(gamma.*ct).^4).^2);
Fh=(gamma.*Kf.*c.^4.*p.^2.*ct)./(Kb.*Kp.^2.*Ktau.^4);
cdot=@(ct,c)(((gamma.*Kf.*(c.^4).*(p.^2).*h)./(Kb.*Kp.^2.*Ktau.^4))+((Vs.*K.*gamma.^2)./(Ks.^2))-((4.*gamma.^4.*ct.^3.*alpha1.*Ke.^4)./(Ke.^4+(gamma.*ct).^4).^2)).*(alpha0+(alpha1.*Ke.^4./((gamma.*ct).^4+Ke.^4)))+((gamma.*Kf.*c.^4.*p.^2.*ct)./(Kb.*Kp.^2.*Ktau.^4)).*(((1-h)./tau_max).*c.^4);
ctdot=@(ct,c)(-(alpha0+(alpha1.*Ke.^4./((gamma.*ct).^4+Ke.^4))).*((4.*gamma.*Kf).*((c.^3.*p.^2.*h.*ct)./(Kb.*Kp.^2.*Ktau.^4))-(2.*Vss.*c./Ks.^2)));
% ct = 0:.1:2.5;
% c = 0:.1:2.5;
[Ct,C] = meshgrid(ct,c);
figure
surf(Ct,C,cdot(Ct,C)-ctdot(Ct,C))
hold on
contour3(C,Ct,cdot(Ct,C)-ctdot(Ct,C), [0 0], '-r', 'LineWidth',2)
.
17 Comments
Torsten
on 23 Sep 2022
At least cdot(ct,c) = 0 is empty for ct >=0.
ctdot(ct,c) = 0 gives two implicit curves symmetric to the ct-axis.
Star Strider
on 23 Sep 2022
Originally, the objective was to determine the intersection:
figure
surf(Ct,C,cdot(Ct,C)-ctdot(Ct,C))
hold on
contour3(C,Ct,cdot(Ct,C)-ctdot(Ct,C), [0 0], '-r', 'LineWidth',2)
I am not certain where we are at this point.
More Answers (0)
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!