Distance between 2 curves from one point
10 views (last 30 days)
Show older comments
Hello,
My aim is to plot the distance between two graphs from point x=150 in x-axis. The distance between the 2 graphs in y-axis is no problem as i just have to subtract the y-values at x=150. But how do i specifically get the distance between graph A from x=150 to the next nearby point of graph B at same y- value. I hope the figure shown below helps you understand my problem.
% Gegebene Daten
x = [29.069, 44.395, 59.528, 74.76, 90.036];
y = [0.07091, 0.076187, 0.081665, 0.087588, 0.093687];
% Quadratische Regression
quadratic_coefficients = polyfit(x, y, 2); % Quadratisches Polynom (ax^2 + bx + c)
% Erzeugen Sie x-Werte für die quadratische Anpassung im erweiterten Bereich
x_values_quadratic = linspace(0, 200, 1000);
% Berechnen Sie die y-Werte für die quadratische Anpassung
y_quadratic = polyval(quadratic_coefficients, x_values_quadratic);
% Lineare Regression für die gemittelte Gerade
x_mean = mean(x); % Durchschnitt der x-Werte
y_mean = mean(y); % Durchschnitt der y-Werte
slope = sum((x - x_mean) .* (y - y_mean)) / sum((x - x_mean).^2); % Steigung
intercept = y_mean - slope * x_mean; % y-Achsenabschnitt
% Erzeugen Sie x-Werte für die gemittelte lineare Anpassung im erweiterten Bereich
x_values_linear = linspace(0, 200, 1000);
% Berechnen Sie die y-Werte für die gemittelte lineare Anpassung
y_linear = slope * x_values_linear + intercept;
% Punkt x = 150
x_point = 150;
y_quadratic_at_150 = polyval(quadratic_coefficients, x_point);
y_linear_at_150 = polyval([slope, intercept], x_point); % Lineare Anpassung bei x = 150
% Abstand in x-Richtung und y-Richtung am Punkt x = 150
distance_x = x_point - x(end); % Abstand in x-Richtung
distance_y = y_quadratic_at_150 - y_linear_at_150; % Abstand in y-Richtung
% Plot der quadratischen und linearen Anpassungen sowie der gegebenen Daten
plot(x, y, 'o', 'MarkerSize', 8, 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b');
hold on;
plot(x_values_quadratic, y_quadratic, '-r', 'LineWidth', 2);
plot(x_values_linear, y_linear, '-g', 'LineWidth', 2);
% Vertikale Linie im Abstand in x-Richtung
plot([x_point, x_point], [min([y_linear, y_quadratic]), max([y_linear, y_quadratic])], '--k', 'LineWidth', 1);
% Horizontale Linie im Abstand in y-Richtung
plot([min(x_values_quadratic), max(x_values_quadratic)], [y_linear_at_150, y_linear_at_150], '--b', 'LineWidth', 1);
xlabel('X-Achse');
ylabel('Y-Achse');
title('Quadratische und Gemittelte Lineare Anpassungen der Daten (Bereich von 0 bis 200)');
legend('Datenpunkte', 'Quadratische Anpassung', 'Gemittelte Lineare Anpassung', 'Abstand in x', 'Abstand in y');
grid on;
hold off;
% Quadratische Abweichung (residuale Summe der Quadrate) für die quadratische Anpassung
residuals_quadratic = y - polyval(quadratic_coefficients, x);
quadratic_deviation = sum(residuals_quadratic.^2);
% Lineare Abweichung (residuale Summe der Quadrate) für die gemittelte lineare Anpassung
residuals_linear = y - (slope * x + intercept);
linear_deviation = sum(residuals_linear.^2);
% Geben Sie die quadratische und lineare Abweichung aus
fprintf('Quadratische Abweichung: %.6f\n', quadratic_deviation);
fprintf('Lineare Abweichung (gemittelte Gerade): %.6f\n', linear_deviation);
fprintf('Abstand in x-Richtung bei x = 150: %.6f\n', distance_x);
fprintf('Abstand in y-Richtung bei x = 150: %.6f\n', distance_y);
0 Comments
Answers (2)
Dyuman Joshi
on 27 Sep 2023
% Gegebene Daten
x = [29.069, 44.395, 59.528, 74.76, 90.036];
y = [0.07091, 0.076187, 0.081665, 0.087588, 0.093687];
% Quadratische Regression
quadratic_coefficients = polyfit(x, y, 2);
% Quadratisches Polynom (ax^2 + bx + c)
% Erzeugen Sie x-Werte für die quadratische Anpassung im erweiterten Bereich
x_values_quadratic = linspace(0, 200, 1000);
% Berechnen Sie die y-Werte für die quadratische Anpassung
y_quadratic = polyval(quadratic_coefficients, x_values_quadratic);
% Lineare Regression für die gemittelte Gerade
x_mean = mean(x); % Durchschnitt der x-Werte
y_mean = mean(y); % Durchschnitt der y-Werte
slope = sum((x - x_mean) .* (y - y_mean)) / sum((x - x_mean).^2); % Steigung
intercept = y_mean - slope * x_mean; % y-Achsenabschnitt
% Erzeugen Sie x-Werte für die gemittelte lineare Anpassung im erweiterten Bereich
x_values_linear = linspace(0, 200, 1000);
% Berechnen Sie die y-Werte für die gemittelte lineare Anpassung
y_linear = slope * x_values_linear + intercept;
% Punkt x = 150
x_point = 150;
y_quadratic_at_150 = polyval(quadratic_coefficients, x_point);
y_linear_at_150 = polyval([slope, intercept], x_point); % Lineare Anpassung bei x = 150
%% Modifications
%Equation of the curve as a function handle
f = @(x) polyval(quadratic_coefficients,x);
%Solve for the x value where f(x) is the same value
%as the y value of linear curve at x=150
x0 = fzero(@(x) f(x) - y_linear_at_150, x_point)
%Get the distance
distance_x = x_point - x0
distance_y = y_quadratic_at_150 - y_linear_at_150; % Abstand in y-Richtung
%Draw the x-distance
plot([x0 x_point],y_linear_at_150 + [0 0],'Color','magenta','LineWidth',3.5)
hold on;
% Plot der quadratischen und linearen Anpassungen sowie der gegebenen Daten
plot(x, y, 'o', 'MarkerSize', 8, 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b');
plot(x_values_quadratic, y_quadratic, '-r', 'LineWidth', 2);
plot(x_values_linear, y_linear, '-g', 'LineWidth', 2);
% Vertikale Linie im Abstand in x-Richtung
plot([x_point, x_point], [min([y_linear, y_quadratic]), max([y_linear, y_quadratic])], '--k', 'LineWidth', 1);
% Horizontale Linie im Abstand in y-Richtung
plot([min(x_values_quadratic), max(x_values_quadratic)], [y_linear_at_150, y_linear_at_150], '--b', 'LineWidth', 1);
xlabel('X-Achse');
ylabel('Y-Achse');
title('Quadratische und Gemittelte Lineare Anpassungen der Daten (Bereich von 0 bis 200)');
legend('Abstand','Datenpunkte', 'Quadratische Anpassung', 'Gemittelte Lineare Anpassung', 'Abstand in x', 'Abstand in y','FontSize',8);
grid on;
hold off;
0 Comments
Star Strider
on 27 Sep 2023
% Gegebene Daten
x = [29.069, 44.395, 59.528, 74.76, 90.036];
y = [0.07091, 0.076187, 0.081665, 0.087588, 0.093687];
% Quadratische Regression
quadratic_coefficients = polyfit(x, y, 2); % Quadratisches Polynom (ax^2 + bx + c)
% Erzeugen Sie x-Werte für die quadratische Anpassung im erweiterten Bereich
x_values_quadratic = linspace(0, 200, 1000);
% Berechnen Sie die y-Werte für die quadratische Anpassung
y_quadratic = polyval(quadratic_coefficients, x_values_quadratic);
% Lineare Regression für die gemittelte Gerade
x_mean = mean(x); % Durchschnitt der x-Werte
y_mean = mean(y); % Durchschnitt der y-Werte
slope = sum((x - x_mean) .* (y - y_mean)) / sum((x - x_mean).^2); % Steigung
intercept = y_mean - slope * x_mean; % y-Achsenabschnitt
% Erzeugen Sie x-Werte für die gemittelte lineare Anpassung im erweiterten Bereich
x_values_linear = linspace(0, 200, 1000);
% Berechnen Sie die y-Werte für die gemittelte lineare Anpassung
y_linear = slope * x_values_linear + intercept;
% Punkt x = 150
x_point = 150;
y_quadratic_at_150 = polyval(quadratic_coefficients, x_point);
y_linear_at_150 = polyval([slope, intercept], x_point); % Lineare Anpassung bei x = 150
% Abstand in x-Richtung und y-Richtung am Punkt x = 150
distance_x = x_point - x(end); % Abstand in x-Richtung
distance_y = y_quadratic_at_150 - y_linear_at_150; % Abstand in y-Richtung
quadratic_x_150 = interp1(y_quadratic, x_values_quadratic, y_linear_at_150); % Desired Quadratic X-Value
Delta_x = 150 - quadratic_x_150; % Delta x
% Plot der quadratischen und linearen Anpassungen sowie der gegebenen Daten
plot(x, y, 'o', 'MarkerSize', 8, 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'b');
hold on;
plot(x_values_quadratic, y_quadratic, '-r', 'LineWidth', 2);
plot(x_values_linear, y_linear, '-g', 'LineWidth', 2);
% Vertikale Linie im Abstand in x-Richtung
plot([x_point, x_point], [min([y_linear, y_quadratic]), max([y_linear, y_quadratic])], '--k', 'LineWidth', 1);
% Horizontale Linie im Abstand in y-Richtung
plot([min(x_values_quadratic), max(x_values_quadratic)], [y_linear_at_150, y_linear_at_150], '--b', 'LineWidth', 1);
xlabel('X-Achse');
ylabel('Y-Achse');
title('Quadratische und Gemittelte Lineare Anpassungen der Daten (Bereich von 0 bis 200)');
legend('Datenpunkte', 'Quadratische Anpassung', 'Gemittelte Lineare Anpassung', 'Abstand in x', 'Abstand in y');
grid on;
hold off;
% Added 'text' Call To Display 'Delta x' —
text(mean([quadratic_x_150 150]), y_linear_at_150, sprintf('\\leftarrow\\Delta x = %2.2f', Delta_x), 'Vert','middle', 'Horiz','lef', 'Rotation',-45)
% Quadratische Abweichung (residuale Summe der Quadrate) für die quadratische Anpassung
residuals_quadratic = y - polyval(quadratic_coefficients, x);
quadratic_deviation = sum(residuals_quadratic.^2);
% Lineare Abweichung (residuale Summe der Quadrate) für die gemittelte lineare Anpassung
residuals_linear = y - (slope * x + intercept);
linear_deviation = sum(residuals_linear.^2);
% Geben Sie die quadratische und lineare Abweichung aus
fprintf('Quadratische Abweichung: %.6f\n', quadratic_deviation);
fprintf('Lineare Abweichung (gemittelte Gerade): %.6f\n', linear_deviation);
fprintf('Abstand in x-Richtung bei x = 150: %.6f\n', distance_x);
fprintf('Abstand in y-Richtung bei x = 150: %.6f\n', distance_y);
.
0 Comments
See Also
Categories
Find more on Biological and Health Sciences in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!