Plot 3D Contour plot on Surface Plot

7 views (last 30 days)
N/A
N/A on 18 Oct 2023
Commented: Voss on 18 Oct 2023
I am trying to plot a contour 3D ontop of a surface plot. But, I do not understand why no contours are being plotted. Code being...mains cript first followed by an associated function.
%% Main Script.
%% Clear the MATLAB Workspace.
clear
clc
close all
format compact
format long
% Constants.
mu = 0.0121505856; % Mass parameter.
% Setup the mesh for computing the effective potential some range and
% in steps of n.
X = -2:0.01:2;
Y = X;
[ x, y ] = meshgrid(X, Y);
% Compute the effective potential.
U_bar = Effective_Potential(x, y, mu);
% Plot the contours of the effective potential.
figure(1),
surf(x, y, U_bar, 'EdgeColor', 'none'), ax = gca;
ax.CLim = [1.5 5.0]; grid on, hold on,
contour3(U_bar, 10, '-k', 'Linewidth', 1.5), hold off,
title('Earth-Moon Pseudo Potential', 'Fontsize', 15),
xlabel('x'), ylabel('y'), zlabel('z'),
axis([-1.5 1.5 -1.5 1.5 1.49 5.0]), view([26, 40]),
colorbar, colormap('turbo'), shading('interp')
%% Asscoiated functions.
function [ U ] = Effective_Potential(x, y, mu)
% Inputs:
% x: A 2D mesh grid of N by N size for the x-coordinate.
% y: A 2D mesh grid of N by N size for the y-coordinate.
% mu: The mass parameter for a CR3BP system.
% Outputs:
% U_bar: 2D mesh grid of N by N size containing the effective
% potential values for the given x and y coordinates.
% Compute the distance of the s/c from the smaller primary.
r_1 = sqrt((x + mu - 1).^2 + y.^2);
% Compute the distance of the s/c from the bigger primary.
r_2 = sqrt((x + mu).^2 + y.^2);
% Compute the effective potential.
U = -(-(1 - mu)./r_2 - mu./r_1 -(1/2)*(x.^2 + y.^2));
end

Accepted Answer

Voss
Voss on 18 Oct 2023
Here I specify x and y as well as the contour levels in the contour3 call. Adjust as desired.
%% Main Script.
%% Clear the MATLAB Workspace.
clear
clc
close all
format compact
format long
% Constants.
mu = 0.0121505856; % Mass parameter.
% Setup the mesh for computing the effective potential some range and
% in steps of n.
X = -2:0.01:2;
Y = X;
[ x, y ] = meshgrid(X, Y);
% Compute the effective potential.
U_bar = Effective_Potential(x, y, mu);
% Plot the contours of the effective potential.
figure(1),
surf(x, y, U_bar, 'EdgeColor', 'none'), ax = gca;
ax.CLim = [1.5 5.0]; grid on, hold on,
contour3(x, y, U_bar, 1.5:0.1:5.0, '-k', 'Linewidth', 1.5), hold off,
title('Earth-Moon Pseudo Potential', 'Fontsize', 15),
xlabel('x'), ylabel('y'), zlabel('z'),
axis([-1.5 1.5 -1.5 1.5 1.49 5.0]), view([26, 40]),
colorbar, colormap('turbo'), shading('interp')
%% Asscoiated functions.
function [ U ] = Effective_Potential(x, y, mu)
% Inputs:
% x: A 2D mesh grid of N by N size for the x-coordinate.
% y: A 2D mesh grid of N by N size for the y-coordinate.
% mu: The mass parameter for a CR3BP system.
% Outputs:
% U_bar: 2D mesh grid of N by N size containing the effective
% potential values for the given x and y coordinates.
% Compute the distance of the s/c from the smaller primary.
r_1 = sqrt((x + mu - 1).^2 + y.^2);
% Compute the distance of the s/c from the bigger primary.
r_2 = sqrt((x + mu).^2 + y.^2);
% Compute the effective potential.
U = -(-(1 - mu)./r_2 - mu./r_1 -(1/2)*(x.^2 + y.^2));
end
  3 Comments
N/A
N/A on 18 Oct 2023
Gotcha! Thanks so much. It works.

Sign in to comment.

More Answers (0)

Products


Release

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!