How to Curvefit amplitude output of a spring-mass-damper system to find coefficients?

4 views (last 30 days)
First of all, I'm not sure if the title gives the right idea, and if this is possible. If that's the case, my apologies in advance.
I have a data set that displays the amplitude of a system that shows decaying motion. (Sample data set attached). I want to identify the quadratic damping applied in the system. So, I want to find a polynomial in the form a + b*(amplitude). I don't want a polynomial of nth order either. How can I do this?

Accepted Answer

Star Strider
Star Strider on 7 Mar 2024
Try this —
load('sampleData.mat')
% whos
objfcn = @(b,t) b(1) .* exp(b(2).*t) .* cos(2*pi*b(3)*t + b(4)) + b(5);
Lvlm = islocalmax(y, 'MinProminence',0.5);
Per = mean(diff(x(Lvlm)));
Freq = Per;
ymax = max(y);
B0 = [ymax; -1E-2; Freq; randn(2,1)];
[B,fv] = fminsearch(@(b) norm(y - objfcn(b,x)), B0)
B = 5x1
13.4564 -0.0478 -0.2511 0.0046 0.0677
fv = 86.0608
% nnz(Lvlm)
figure
plot(x,y)
hold on
% plot(x(Lvlm), y(Lvlm), 'vr')
plot(x, objfcn(B,x))
hold off
grid
text(25, 12, sprintf('$f(x) = %.3f \\cdot e^{%.3f \\cdot t} \\cdot cos(2 \\cdot \\pi \\cdot %.3f\\ t %+.3f) %+.3f$',B), 'Interpreter','latex', 'FontSize',11)
% xlim([0 50])
.
  1 Comment
Alex Sha
Alex Sha on 8 Mar 2024
If taking fitting function as @Star Strider proposed:
b(1) .* exp(b(2).*t) .* cos(2*pi*b(3)*t + b(4)) + b(5);
the results below will be little better:
Sum Squared Error (SSE): 3612.83461221834
Root of Mean Square Error (RMSE): 0.299830523951318
Correlation Coef. (R): 0.990716970140293
R-Square: 0.981520114923963
Parameter Best Estimate
--------- -------------
b1 -13.9887747654467
b2 -0.05066160816698
b3 -199.749779715466
b4 -3.01726078981019
b5 0.287608394237128

Sign in to comment.

More Answers (0)

Categories

Find more on Polynomials in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!