Simulation data Fittting problem

1 view (last 30 days)
tuhin
tuhin on 1 Apr 2024
Commented: Torsten on 2 Apr 2024
% Rearranged Data Matrix
dr_data = [2.1714, -0.0059213; 4.3429, 0.017543; 6.5143, 0.086; 8.6857, 0.15588; 10.8571, 0.20539; 13.0286, 0.19694; 15.2, 0.20442; 17.3714, 0.15659; 19.5429, 0.18918; 21.7143, 0.18262; 23.8857, 0.13818; 26.0571, 0.1539; 28.2286, 0.11195; 30.4, 0.12689; 32.5714, 0.068146; 34.7429, 0.028182; 36.9143, 0.013852; 39.0857, 0.039137; 41.2571, 0.00033664; 43.4286, -0.036782; 45.6, -0.043573; 47.7714, -0.060933; 49.9429, -0.030135; 52.1143, -0.043654; 54.2857, -0.039393; 56.4571, -0.030637; 58.6286, -0.03931; 60.8, -0.044883; 62.9714, -0.022349; 65.1429, -0.01046; 67.3143, 0.0014764; 69.4857, 0.012712; 71.6571, 0.0211; 73.8286, 0.02204];
dtheta_data = [2.1714, -0.011123; 4.3429, -0.31772; 6.5143, -0.3745; 8.6857, -0.40013; 10.8571, -0.50617; 13.0286, -0.49345; 15.2, -0.44292; 17.3714, -0.42858; 19.5429, -0.41354; 21.7143, -0.29636; 23.8857, -0.22671; 26.0571, -0.099143; 28.2286, 0.0087113; 30.4, -0.042737; 32.5714, 0.01474; 34.7429, 0.11353; 36.9143, 0.094084; 39.0857, 0.11759; 41.2571, 0.16252; 43.4286, 0.16718; 45.6, 0.22171; 47.7714, 0.25543; 49.9429, 0.25836; 52.1143, 0.23052; 54.2857, 0.12648; 56.4571, 0.15518; 58.6286, 0.20362; 60.8, 0.22967; 62.9714, 0.22242; 65.1429, 0.19043; 67.3143, 0.1749; 69.4857, 0.16304; 71.6571, 0.14256; 73.8286, 0.14299];
% Define parameters
lambda = 1.2;
R = 180; Or can use range anything above 75 to 400
rout = 75;
% Create figure for separate plots
for i = 1:length(kappa_range)
for j = 1:length(theta_k_range)
kappa = kappa_range(i);
theta_k = theta_k_range(j);
% Calculate functions for the chosen kappa and theta_k
omega_m = sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) - sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
omega_p = sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) + sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
A1 = (8 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)) * (-2 * (omega_m^2 + omega_p^2) / (omega_m^2 * omega_p^2) ...
+ rout * omega_m^2 * (kappa^2 - omega_p^4) / (kappa^2 * omega_p * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_p)) ...
- rout * omega_p^2 * (kappa^2 - omega_m^4) / (kappa^2 * omega_m * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_m)));
B1 = (8 * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)) * ...
(2 / (omega_m^2 * omega_p^2 * kappa) + rout / (kappa * omega_m * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_m)) ...
- rout / (kappa * omega_p * (omega_m^2 - omega_p^2) * besselj(1, rout * omega_p)));
% Define functions for fitting
dr = @(r, params) (2 * besselj(1, r * omega_p) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_m^2 * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_p^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m^2 * omega_p .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (2 * besselj(1, r * omega_m) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_p^2 * (kappa^2 - omega_m^4)) ./ (omega_m .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_m^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m * omega_p^2 .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (16 * r * R^2 * (omega_m^2 + omega_p^2) .* (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(omega_p^2 * omega_m^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2));
dtheta = @(r, params) (2 * besselj(1, r * omega_p) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2)) .* ...
(-sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_p^2 * (rout^2 - 4 * R^2)^2) - params(2) * omega_p * (kappa^2 - omega_m^4)))) ...
+ (2 * besselj(1, r * omega_m) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2))) .* ...
(sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_m .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_m^2 * (rout^2 - 4 * R^2)^2) + params(2) * omega_m * (kappa^2 - omega_p^4)))) ...
+ (16 * r * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ ...
(kappa * omega_m^2 * omega_p^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)));
% Fit dr data
p_dr = lsqcurvefit(@(params, r) dr(r, params), [omega_p, A1], dr_data(:, 1), dr_data(:, 2));
% Fit dtheta data
p_dtheta = lsqcurvefit(@(params, r) dtheta(r, params), [omega_p, A1], dtheta_data(:, 1), dtheta_data(:, 2));
% Plot dr and dtheta
figure;
subplot(2, 1, 1);
plot(r, dr(r, p_dr));
hold on;
scatter(dr_data(:, 1), dr_data(:, 2), 'r');
xlabel('r');
ylabel('dr');
title(['kappa = ', num2str(kappa), ', theta_k = ', num2str(theta_k)]);
legend('Fitted Curve', 'Simulation Data');
subplot(2, 1, 2);
plot(r, dtheta(r, p_dtheta));
hold on;
scatter(dtheta_data(:, 1), dtheta_data(:, 2), 'r');
xlabel('r');
ylabel('dtheta');
title(['kappa = ', num2str(kappa), ', theta_k = ', num2str(theta_k)]);
legend('Fitted Curve', 'Simulation Data');
end
end
................................
I want to fit the simulated data points of d_r(r) vs r and d_theta(r ) vs r using the below mentioned analytical solutions. There are two parameters. one is kappa and another one is theta_k. For the fitting the kappa can choose anything positive values the theta_k should be with in 0 to pi/2 any values. If required one can vary R also in between 75 to 1000 or so. That means lambda, kappa, theta_k, and R can be used as parameters to fit the datas. I am not getting any proper fitting of those two plots. I would be appreaciate any help or suggestion about ths fitting.
  3 Comments
tuhin
tuhin on 1 Apr 2024
Thanks trosten! How to modify it? Can you please check the fitting with those 4 parmters. I checked and not working seems. If you have time please takae a look on the fitting.
tuhin
tuhin on 1 Apr 2024
Edited: Voss on 1 Apr 2024
% Rearranged Data Matrix
dr_data = [2.1714, -0.0059213; 4.3429, 0.017543; 6.5143, 0.086; 8.6857, 0.15588; 10.8571, 0.20539; 13.0286, 0.19694; 15.2, 0.20442; 17.3714, 0.15659; 19.5429, 0.18918; 21.7143, 0.18262; 23.8857, 0.13818; 26.0571, 0.1539; 28.2286, 0.11195; 30.4, 0.12689; 32.5714, 0.068146; 34.7429, 0.028182; 36.9143, 0.013852; 39.0857, 0.039137; 41.2571, 0.00033664; 43.4286, -0.036782; 45.6, -0.043573; 47.7714, -0.060933; 49.9429, -0.030135; 52.1143, -0.043654; 54.2857, -0.039393; 56.4571, -0.030637; 58.6286, -0.03931; 60.8, -0.044883; 62.9714, -0.022349; 65.1429, -0.01046; 67.3143, 0.0014764; 69.4857, 0.012712; 71.6571, 0.0211; 73.8286, 0.02204];
dtheta_data = [2.1714, -0.011123; 4.3429, -0.31772; 6.5143, -0.3745; 8.6857, -0.40013; 10.8571, -0.50617; 13.0286, -0.49345; 15.2, -0.44292; 17.3714, -0.42858; 19.5429, -0.41354; 21.7143, -0.29636; 23.8857, -0.22671; 26.0571, -0.099143; 28.2286, 0.0087113; 30.4, -0.042737; 32.5714, 0.01474; 34.7429, 0.11353; 36.9143, 0.094084; 39.0857, 0.11759; 41.2571, 0.16252; 43.4286, 0.16718; 45.6, 0.22171; 47.7714, 0.25543; 49.9429, 0.25836; 52.1143, 0.23052; 54.2857, 0.12648; 56.4571, 0.15518; 58.6286, 0.20362; 60.8, 0.22967; 62.9714, 0.22242; 65.1429, 0.19043; 67.3143, 0.1749; 69.4857, 0.16304; 71.6571, 0.14256; 73.8286, 0.14299];
% Best Parameters (Assumed)
best_params = [0.2, 2, pi/10, 200]; % Just for illustration, replace with actual values
% Constants
lambda = best_params(1); % Best lambda value
kappa = best_params(2); % Best kappa value
theta_k = best_params(3); % Best theta_k value
R = best_params(4); % Best R value
rout = 75; % Define rout
% Calculate omega_m and omega_p
omega_m = @(lambda, kappa, theta_k) sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) - sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
omega_p = @(lambda, kappa, theta_k) sqrt(kappa / (2 * (lambda + 1))) * sqrt((lambda + 2) * cos(theta_k) + sqrt((lambda + 2)^2 * cos(theta_k)^2 - 4 * (lambda + 1)));
% Define A1 and B1
A1 = @(R, kappa, lambda, theta_k, rout) (8 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) * ...
(-2 * (omega_m(lambda, kappa, theta_k)^2 + omega_p(lambda, kappa, theta_k)^2) / (omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) ...
+ rout * omega_m(lambda, kappa, theta_k)^2 * (kappa^2 - omega_p(lambda, kappa, theta_k)^4) / (kappa^2 * omega_p(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_p(lambda, kappa, theta_k))) ...
- rout * omega_p(lambda, kappa, theta_k)^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^4) / (kappa^2 * omega_m(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_m(lambda, kappa, theta_k))));
B1 = @(R, kappa, lambda, theta_k, rout) (8 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) / ((rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) * ...
(2 / (omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2 * kappa) + rout / (kappa * omega_m(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_m(lambda, kappa, theta_k))) ...
- rout / (kappa * omega_p(lambda, kappa, theta_k) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * besselj(1, rout * omega_p(lambda, kappa, theta_k))));
% Define functions for fitting
dr = @(r, params) (2 * besselj(1, r * omega_p(lambda, kappa, theta_k)) ./ ((omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) .* ...
((omega_m(lambda, kappa, theta_k)^2 * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_p(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2))) ./ ...
(kappa^2 * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + (B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k) .* sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ kappa))) ...
- (2 * besselj(1, r * omega_m(lambda, kappa, theta_k)) ./ ((omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2) * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) .* ...
((omega_p(lambda, kappa, theta_k)^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^4)) ./ (omega_m(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa^2 * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + (B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k) * omega_p(lambda, kappa, theta_k)^2 .* sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ kappa))) ...
- (16 * r * R^2 * (omega_m(lambda, kappa, theta_k)^2 + omega_p(lambda, kappa, theta_k)^2) .* (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(omega_p(lambda, kappa, theta_k)^2 * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)));
dtheta = @(r, params) (2 * besselj(1, r * omega_p(lambda, kappa, theta_k)) ./ ((kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2)) .* ...
(-sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_p(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) * kappa + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) - B1(R, kappa, lambda, theta_k, rout) * omega_p(lambda, kappa, theta_k) * (kappa^2 - omega_m(lambda, kappa, theta_k)^4)))) ...
+ (2 * besselj(1, r * omega_m(lambda, kappa, theta_k)) ./ ((kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * (omega_m(lambda, kappa, theta_k)^2 - omega_p(lambda, kappa, theta_k)^2))) .* ...
(sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)) ./ (omega_m(lambda, kappa, theta_k) .* (A1(R, kappa, lambda, theta_k, rout) * kappa + (16 * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)) ./ ...
(kappa * omega_m(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2) + B1(R, kappa, lambda, theta_k, rout) * omega_m(lambda, kappa, theta_k) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4)))) ...
+ (16 * r * R^2 * (kappa^2 - omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2) * sqrt((kappa^2 - omega_m(lambda, kappa, theta_k)^4) * (kappa^2 - omega_p(lambda, kappa, theta_k)^4))) ./ ...
(kappa * omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m(lambda, kappa, theta_k)^2 * omega_p(lambda, kappa, theta_k)^2)));
% Fit the data using the defined functions with initial guesses from best_params
params_dr = lsqcurvefit(@(params, r) dr(r, params), best_params(1:2), dr_data(:, 1), dr_data(:, 2));
params_dtheta = lsqcurvefit(@(params, r) dtheta(r, params), best_params(1:2), dtheta_data(:, 1), dtheta_data(:, 2));
% Plot the results
figure;
subplot(1, 2, 1);
plot(dr_data(:, 1), dr_data(:, 2), 'ro', 'DisplayName', 'Data');
hold on;
plot(dr_data(:, 1), dr(dr_data(:, 1), params_dr), 'b-', 'DisplayName', 'Fit');
xlabel('r');
ylabel('dr');
legend('Location', 'best');
title('Fitting dr');
subplot(1, 2, 2);
plot(dtheta_data(:, 1), dtheta_data(:, 2), 'ro', 'DisplayName', 'Data');
hold on;
plot(dtheta_data(:, 1), dtheta(dtheta_data(:, 1), params_dtheta), 'b-', 'DisplayName', 'Fit');
xlabel('r');
ylabel('d\theta');
legend('Location', 'best');
title('Fitting d\theta');
Hi Torsten,Please check. still not working. please look into it

Sign in to comment.

Answers (1)

Torsten
Torsten on 1 Apr 2024
Edited: Torsten on 1 Apr 2024
Call lsqcurvefit once as
dr = @(params,r) (2 * besselj(1, r(:,1). * omega_p) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_m^2 * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_p^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m^2 * omega_p .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (2 * besselj(1, r(:,1) * omega_m) ./ ((omega_m^2 - omega_p^2) * (kappa^2 + omega_m^2 * omega_p^2)) .* ...
((omega_p^2 * (kappa^2 - omega_m^4)) ./ (omega_m .* (params(1) + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa^2 * omega_m^2 * (rout^2 - 4 * R^2)^2)) + (params(2) * omega_m * omega_p^2 .* sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ kappa))) ...
- (16 * r(:,1) * R^2 * (omega_m^2 + omega_p^2) .* (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(omega_p^2 * omega_m^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2));
dtheta = @(params,r) (2 * besselj(1, r(:,2) * omega_p) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2)) .* ...
(-sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_p .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_p^2 * (rout^2 - 4 * R^2)^2) - params(2) * omega_p * (kappa^2 - omega_m^4)))) ...
+ (2 * besselj(1, r(:,2) * omega_m) ./ ((kappa^2 + omega_m^2 * omega_p^2) * (omega_m^2 - omega_p^2))) .* ...
(sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4)) ./ (omega_m .* (params(1) * kappa + (16 * R^2 * (kappa^2 - omega_m^2 * omega_p^2)) ./ ...
(kappa * omega_m^2 * (rout^2 - 4 * R^2)^2) + params(2) * omega_m * (kappa^2 - omega_p^4)))) ...
+ (16 * r(:,2) * R^2 * (kappa^2 - omega_m^2 * omega_p^2) * sqrt((kappa^2 - omega_m^4) * (kappa^2 - omega_p^4))) ./ ...
(kappa * omega_m^2 * omega_p^2 * (rout^2 - 4 * R^2)^2 * (kappa^2 + omega_m^2 * omega_p^2)));
params = lsqcurvefit(@(params,r)[dr(params,r),dtheta(params,r)],[omega_p, A1],[dr_data(:,1),dtheta_data(:,1)],[dr_data(:,2),dtheta_data(:,2)])
  18 Comments
tuhin
tuhin on 2 Apr 2024
can you please modify the code and include this within the code?
Torsten
Torsten on 2 Apr 2024
No, sorry. This is too much work to do.

Sign in to comment.

Categories

Find more on Parallel Computing Fundamentals in Help Center and File Exchange

Products


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!