Creating a sinewave with logarithmic frequency
    19 views (last 30 days)
  
       Show older comments
    
    Djamil Boulahbal
 on 24 Oct 2024
  
    
    
    
    
    Commented: Djamil Boulahbal
 on 25 Oct 2024
            I'm trying to generate a sinewave with logarithmic increasing frequency.
    freq = f_str*((f_end/f_str).^(time/T));
The max frequency in the sinewave is 50 Hz. However, when I construct such sinewave and run a spectrogram on it (STFT), it shows that the max frequency is 150 Hz. 
Any thoughts would be appreciated.
% Generate log-frequency sweep then plot it and its spectrogram
NPTS = 225000;
f_str = 7;
f_end = 50;
T = 450;
time = linspace(0,T,NPTS)'; 
freq = f_str*((f_end/f_str).^(time/T));
Y = sin(2*pi*freq.*time);       % Sinewave with logarithmic sweep
fs = (2*NPTS)/900;
subplot(311), plot(time, freq, '-b', 'LineWidth',3), grid on, xlabel('Time  [sec]'), ylabel('Frequency  [Hz]')
subplot(312), plot(time, Y, '-b', 'LineWidth',3), grid on, xlabel('Time  [sec]'), ylabel('SineWave  [-]'), axis([0 450 -2 2])
subplot(313), stft(Y, fs, 'FrequencyRange', 'onesided'), set(gca,'Ylim',[0 200]), colorbar off
4 Comments
  dpb
      
      
 on 25 Oct 2024
				
      Edited: dpb
      
      
 on 25 Oct 2024
  
			% Generate log-frequency sweep then plot it and its spectrogram
NPTS = 225000;
f_str = 7;
f_end = 50;
T = 450;
time = linspace(0,T,NPTS)'; 
freq = f_str*((f_end/f_str).^(time/T));
Y = sin(2*pi*freq.*time);       % Sinewave with logarithmic sweep
fs = (2*NPTS)/900;
tView=[0 1]; 
y=chirp(time,f_str,T,f_end,"logarithmic",-90);
subplot(321), plot(time, Y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('Original'), axis([0 450 -2 2])
xlim(tView)
subplot(323), plot(time, y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('Chirp'), axis([0 450 -2 2])
xlim(tView)
tView=[T-0.1 T];
subplot(322), plot(time, Y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('Original'), axis([0 450 -2 2])
xlim(tView)
subplot(324), plot(time, y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('Chirp'), axis([0 450 -2 2])
xlim(tView)
Compares to using the Signal Processing TB chirp function -- I didn't have time to try to dig into just what the root cause is in the straightforward calculation; perhaps the issue of the large angle is part, but the internals of the chirp function deal with it and do produce the expected number of cycles over the last 100 msec of the time history whereas the original clearly shows that the frequency of the actual time trace itself is right at the 150 Hz, not the expected 50 Hz.  OTOMH, I don't have any better explanation, only that one can illustrate the result...
Accepted Answer
  Star Strider
      
      
 on 24 Oct 2024
        Try this ’— 
% Generate log-frequency sweep then plot it and its spectrogram
NPTS = 225000;
f_str = 7;
f_end = 50;
T = 450;
time = linspace(0,T,NPTS)'; 
% freq = f_str*((f_end/f_str).^(time/T));
freq = logspace(-3, log10(f_end/f_str),NPTS)';
Y = sin(2*pi*freq.*time);       % Sinewave with logarithmic sweep
fs = (2*NPTS)/900;
subplot(311), plot(time, freq, '-b', 'LineWidth',3), grid on, xlabel('Time  [sec]'), ylabel('Frequency  [Hz]')
subplot(312), plot(time, Y, '-b', 'LineWidth',3), grid on, xlabel('Time  [sec]'), ylabel('SineWave  [-]'), axis([0 450 -2 2])
subplot(313), stft(Y, fs, 'FrequencyRange', 'onesided'), set(gca,'Ylim',[0 200]), colorbar off
Make appropriate changes to get the result you want.  
.
5 Comments
  Star Strider
      
      
 on 25 Oct 2024
				As always, my pleasure!  
I am not cerrtain where the problem lies.  The code appears to be correct, and iis by my analyses (not shown, since they did not add any useful information).  
More Answers (2)
  Djamil Boulahbal
 on 25 Oct 2024
        
      Edited: Djamil Boulahbal
 on 25 Oct 2024
  
      1 Comment
  dpb
      
      
 on 25 Oct 2024
				But the sin function itself deals with long time series ok it seems...
% Generate log-frequency sweep then plot it and its spectrogram
NPTS = 225000;
f_str = 7;
f_end = 50;
T = 450;
time = linspace(0,T,NPTS)'; 
%freq = f_str*((f_end/f_str).^(time/T));
%Y = sin(2*pi*freq.*time);       % Sinewave with logarithmic sweep
Y = sin(2*pi*f_str*time);        % Sinewave with starting frequency
tView=[0 1]; 
y = sin(2*pi*f_end*time);        % Sinewave with ending frequency
subplot(321), plot(time, Y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('Start F'), axis([0 450 -2 2])
tView=[0 1]; xlim(tView)
subplot(322), plot(time, y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('End F'), axis([0 450 -2 2])
tView=[T-0.1 T];xlim(tView)
subplot(323), plot(time, Y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('Start F'), axis([0 450 -2 2])
tView=[0 1]; xlim(tView)
subplot(324), plot(time, y, '-b', 'LineWidth',1), grid on, xlabel('Time  [sec]'), ylabel('End F'), axis([0 450 -2 2])
tView=[T-0.1 T];xlim(tView)
The first 1 sec shows 7 cycles, the last 100 msed is 5, so the two full-length calculations of a fixed-frequency sine wave over the same t vector produce the expected frequencies.  Hence one must conclude it isn't internal rounding in the sin() function itself causing the difference in the original code..
As before, I don't have time to really dig, but can show some results that are expected to compare against...
See Also
Categories
				Find more on Title in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!








