Damped harmonic motion curve fit
42 views (last 30 days)
Show older comments
Stashu Kozlowski
on 9 Oct 2019
Commented: Hossam Amin
on 23 Jan 2022
Hey,
I have a data set in matlab, when plotted it looks like this:
My goal is to determen a damped sinusoidal equation that would fit this data set, I honestly dont even know how to start. I have included my code, but it isn't much.Any help is much appreciated. Thank you!
0 Comments
Accepted Answer
Star Strider
on 10 Oct 2019
Try this:
D = load('Stashu Kozlowski DHM.mat'); % File Attached
x = D.x;
y = D.y;
y = detrend(y); % Remove Linear Trend
yu = max(y);
yl = min(y);
yr = (yu-yl); % Range of ‘y’
yz = y-yu+(yr/2);
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
zt = x(zci(y));
per = 2*mean(diff(zt)); % Estimate period
ym = mean(y); % Estimate offset
fit = @(b,x) b(1) .* exp(b(2).*x) .* (sin(2*pi*x./b(3) + 2*pi/b(4))) + b(5); % Objective Function to fit
fcn = @(b) norm(fit(b,x) - y); % Least-Squares cost function
[s,nmrs] = fminsearch(fcn, [yr; -10; per; -1; ym]) % Minimise Least-Squares
xp = linspace(min(x),max(x), 500);
figure
plot(x,y,'b', 'LineWidth',1.5)
hold on
plot(xp,fit(s,xp), '--r')
hold off
grid
xlabel('Time')
ylabel('Amplitude')
legend('Original Data', 'Fitted Curve')
text(0.3*max(xlim),0.7*min(ylim), sprintf('$y = %.3f\\cdot e^{%.0f\\cdot x}\\cdot sin(2\\pi\\cdot x\\cdot %.0f%.3f)$', [s(1:2); 1./s(3:4)]), 'Interpreter','latex')
The estimated parameters are:
s =
-1.398211481931498e+00
-6.142349926864338e+02
2.591368008158479e-04
-5.442228857001487e+00
-3.075267405594925e-15
and the fit is nearly perfect:
More Answers (1)
Alex Sha
on 10 Oct 2019
The fellow results are little better.
Parameter Best Estimate
---------- -------------
b1 -1.36099782974822
b2 -599.110824641553
b3 0.000259106153388041
b4 1.22915310606227
b5 0.0138196119722517
0 Comments
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!