Normalization of complex eigenvector
6 views (last 30 days)
Show older comments
What is the best way of normalisation of a complex eigenvector of a complex hermitian matrix. Here I am doing this in the following way, but norm remaim as it is.
syms theta phi
a=[cos(theta) sin(theta)*exp(1i*phi);sin(theta)*exp(-1i*phi) cos(theta)];
[V,~]=eig(a);
V(:,1)/norm(V(:,1))
This produces the vector as
exp(phi*1i)/(exp(-2*imag(phi)) + 1)^(1/2)
1/(exp(-2*imag(phi)) + 1)^(1/2)
But Normalization factor remain in symbolic form, but it should by sqrt(2). Pl somebody help me to understand.
5 Comments
Accepted Answer
Vladimir Sovkov
on 1 Feb 2020
You probably want
V(:,1) = V(:,1)/norm(V(:,1));
Besides, if your theta and phi are supposed to be real, the overall computation would be simpler with the assumptions
syms theta phi
assume(theta,'real');
assume(phi,'real');
18 Comments
Walter Roberson
on 3 Feb 2020
Well, given sufficient time you can get some result, but if you want values that mean anything, you need to evaluate symbolically to 80 or so digits and set a relatively large numeric integration target.
If you are willing to give up that approximately 2% contribution term then the process would be to extract the 3rd term of r, evaluate it at a matrix of theta and k1, evalf(), and integrate the matrix over phi = 0..2*pi and the integration will not take a grindingly long time. If you keep the approximately 2% contribution term you would probably have to set a larger permitted relative error term in order to prevent the numeric integration from being very very slow.
Integrating r as a whole and then substituting k1 and theta into it is probably going to take much too long.
If you substitute in a particular theta value then the third term of r expands to a surprisingly long expression involving k1 and phi that is not profitable to do an exact integration on with respect to phi.
I don't know if an exact integral of r even exists. I had to kill the exact integration when it got up to 75 gigabytes of memory on my system.
More Answers (1)
See Also
Categories
Find more on Number Theory in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!