solving Linear differential equation
6 views (last 30 days)
Show older comments
A = [[(sin(10*(pi/180))) * (sin(90*(pi/180))),(sin(10*(pi/180)))*(cos(90*(pi/180))), cos(10*(pi/180))],[(sin(10*(pi/180))) * (sin(180*(pi/180))),(sin(10*(pi/180)))*(cos(180*(pi/180))), cos(10*(pi/180))],[(sin(0*(math.pi/180))) * (sin(0*(pi/180))),(sin(0*(pi/180)))*(cos(0*(pi/180))), cos(0*(pi/180))]]
This is my code in python . Can you please translate this code to matlab for solving this equation using linear differential eguation .It is in form of a 3x3 matrix.
0 Comments
Answers (1)
Luna
on 10 Mar 2020
Edited: Luna
on 10 Mar 2020
Hi there!
There are 2 ways of doing this. It depends on your B vector according to Ax = B equation system. Your solutions below. You should read the links I mentioned.
(Note: Matlab understands pi as pi. 3,14... no need extra library for that.)
If your case is Linear Equations:
Read the link: Solve System of Linear Equations
% definition of A:
A = [...
[(sin(10*(pi/180))) * (sin(90*(pi/180))),(sin(10*(pi/180)))*(cos(90*(pi/180))), cos(10*(pi/180))];...
[(sin(10*(pi/180))) * (sin(180*(pi/180))),(sin(10*(pi/180)))*(cos(180*(pi/180))), cos(10*(pi/180))];...
[(sin(0*(pi/180))) * (sin(0*(pi/180))),(sin(0*(pi/180)))*(cos(0*(pi/180))), cos(0*(pi/180))]...
];
% Solution 1:
% AX = B. Depends on what B is.
B = [1,2,3]'; % I prefer 3x1 vertical vector. You should define your own B.
X = linsolve(A,B);
% Solution 2:
% Define your equations with symbolic characters.
syms x y z;
eqn1 = ((sin(10*(pi/180))) * (sin(90*(pi/180))))* x + ((sin(10*(pi/180)))*(cos(90*(pi/180))))*y + (cos(10*(pi/180)))*z == 1; % this equation equals first element of B.
eqn2 = ((sin(10*(pi/180))) * (sin(180*(pi/180))))*x + (sin(10*(pi/180)))*(cos(180*(pi/180)))*y + cos(10*(pi/180))*z == 2;
eqn3 = ((sin(0*(pi/180))) * (sin(0*(pi/180))))*x + ((sin(0*(pi/180)))*(cos(0*(pi/180))))*y +(cos(0*(pi/180)))*z == 3;
% Create your A matrix and B vector:
[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [x, y, z]);
X = linsolve(A,B); % this result is symbolic.
% convert to numeric:
Result = double(X);
disp(Result);
If your case is Differential Equations
Read this link: Solve a System of Differential Equations
%% For System of Differential Equations:
% definition of A:
A = [...
[(sin(10*(pi/180))) * (sin(90*(pi/180))),(sin(10*(pi/180)))*(cos(90*(pi/180))), cos(10*(pi/180))];...
[(sin(10*(pi/180))) * (sin(180*(pi/180))),(sin(10*(pi/180)))*(cos(180*(pi/180))), cos(10*(pi/180))];...
[(sin(0*(pi/180))) * (sin(0*(pi/180))),(sin(0*(pi/180)))*(cos(0*(pi/180))), cos(0*(pi/180))]...
];
syms x(t) y(t) z(t)
ode1 = diff(x) == ((sin(10*(pi/180))) * (sin(90*(pi/180))))* x + ((sin(10*(pi/180)))*(cos(90*(pi/180))))*y + (cos(10*(pi/180)))*z;
ode2 = diff(y) == ((sin(10*(pi/180))) * (sin(180*(pi/180))))*x + (sin(10*(pi/180)))*(cos(180*(pi/180)))*y + cos(10*(pi/180))*z;
ode3 = diff(z) == ((sin(0*(pi/180))) * (sin(0*(pi/180))))*x + ((sin(0*(pi/180)))*(cos(0*(pi/180))))*y +(cos(0*(pi/180)))*z;
odes = [ode1;ode2;ode3];
S = dsolve(odes)
You will get a struct S like below:
S =
struct with fields:
y: [1×1 sym]
x: [1×1 sym]
z: [1×1 sym]
To reach each of them use dot notation:
xSol(t) = S.x;
ySol(t) = S.y; % etc..
2 Comments
See Also
Categories
Find more on Equation Solving in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!