Get the middle point of a matrix

32 views (last 30 days)
Xin
Xin on 23 Jun 2020
Commented: Xin on 26 Jun 2020
Hi everyone. I have an interesting situation. So the idea is to calculate the value of middle points of a 1D, 2D or 3D matrix.
For example, A is a 100*100 matrix. What I want to obtain is an 99*99 matrix which simply represent the averaged value of the 3D matrix A.
I could easily do it by following:
B = (A(2:end,2:end)+A(2:end,1:end-1)+A(1:end-1,2:end)+A(1:end-1,1:end-1))/4;
However, this is rather slow as I need to reference A by 4 times. The situation is worse for 3D or large A. I am just wondering if there is a faster way to do this task by avoiding the multiple referencing or if there is any build-in matlab function that could do it in a faster way?
Thank you very much!

Accepted Answer

Tommy
Tommy on 23 Jun 2020
Edited: Tommy on 23 Jun 2020
Possibly MATLAB's convolution functions will be faster:
% 1D case:
B = conv(A, ones(2,1), 'valid') / 2;
% 2D case:
B = conv2(A, ones(2), 'valid') / 4;
% 3D case:
B = convn(A, ones(2,2,2), 'valid') / 8;
Generalized for dimension n (I think) by something like this:
B = convn(A, ones([2*ones(1,n),1]), 'valid') / 2^n;
(edit)
Seems to be faster for this case at least:
A = rand(100,100,100);
f1 = @() (A(2:end,2:end,2:end)+A(2:end,2:end,1:end-1)+A(2:end,1:end-1,2:end)+A(2:end,1:end-1,1:end-1)+...
A(1:end-1,2:end,2:end)+A(1:end-1,2:end,1:end-1)+A(1:end-1,1:end-1,2:end)+A(1:end-1,1:end-1,1:end-1))/8;
f2 = @() convn(A, ones(2,2,2), 'valid') / 8;
>> timeit(f1)
ans =
0.0430
>> timeit(f2)
ans =
0.0086
>> all(abs(f1() - f2()) < 0.000000001, 'all')
ans =
logical
1
  1 Comment
Xin
Xin on 26 Jun 2020
Thank you Tommy! This indeed is faster than before. I am actually thinking if there is any other faster way to do this task. If you have further idea I would really appreciate it.
Xin

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!