Building Low-pass filter with Sinc function

124 views (last 30 days)
Dear Community,
I am trying to build a low-pass filter by using a sinc function for my homework assignment. I then use convolution to later filter an audio sample with this filter. However, when I plot the filter in a bode plot it looks like a high-pass filter. Can anyone tell me what I'm doing wrong?
Thanks in advance!
%% Downsampled by K with low-pass filter
% Build filter
clear all; close all
K = 2;
fs = 1600;
N = 51;
n = (-(N-1)/2:1:(N-1)/2);
h = (1/K) * sinc((pi/K)*n);
% Plot frequency response filter
[H, H_vec] = fftFreq(h, fs, 1 );
figure
plot(H_vec*2*pi/fs, abs(H))
filt_tf =tf(h,1,1/fs,'Variable','z^-1');
figure
bode(filt_tf)
function [ X , f ] = fftFreq( data , fs, w )
% Number of FFT points
NFFT = length( data );
% calculate FFT
X = fft(data .* w);
% calculate frequency spacing
df = fs/NFFT;
% calculate unshifted frequency vector
f = (0:(NFFT-1)) * df;
end

Accepted Answer

Star Strider
Star Strider on 18 Sep 2020
I am not exactly certain what the problem is from a theoretical prespective (I will leave it to you to explore that), however the sinc pulse is too narrow. Increase ‘K’ to 4 or more, and you get a lowpass result.
Also, since this is a discrete filter, the freqz function will do what you want:
figure
freqz(h,1,2^16,fs)
If you are going to use it as a FIR discrete filter, do the actual filtering with the filtfilt function for the best results.
.
  4 Comments
Liang
Liang on 22 Sep 2020
UPDATE:
Apparently, I made a mistake in the mathematical procedure to come up with my sinc low-pass filter. The pi in the sinc function shouldn't be there. Now everything is working correctly. Thanks again for the help.

Sign in to comment.

More Answers (1)

Preston Pan
Preston Pan on 1 Jul 2022
Consider removing the pi in the argument of sinc. I get that scaling is necessary to respect the fourier scaling relationship and preserve unit gain in the passband but I think that would just be rect(K*t) <--> 1/|K| * sinc(f/K).
When I removed it and did
h=(1/K)*sinc(n/K)
the filter produced the desired behavior.

Categories

Find more on Signal Generation and Preprocessing in Help Center and File Exchange

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!