design of journal bearing
24 views (last 30 days)
Show older comments
matlab coder
on 2 Jan 2021
Commented: matlab coder
on 3 Jan 2021
d=input('enter a diameter value:'); %journal diameter (m)
l=input('enter a length value:'); %bearing length (m)
r=d/2; %radius (m)
c=input('enter a radial clearance:'); % radial clearance (m)
T1=input('assign an inlet temperature:'); %inlet temperature (celcius)
delta_T=input('enter temperature rise value:'); %assumed temperature rise (celcius)
W=input('enter a radial load on journal:'); %radial load on journal (N)
n_s=input('enter journal speed value of shaft:'); %journal speed (rev/sec)
P=W/(l*d); %bearing pressure (N/m^2)
Tavg_vector=[10:10:140]; %average temperature vector
abs_vis_vector=[500 190 90 45 28 18 12 9 6.5 5.2 4.2 3.2 2.8 2.6]; % absolute viscosity vector
Tavg=T1+(delta_T/2); %average temperature (celcius)
fabs_vis_vector=csapi(Tavg_vector,abs_vis_vector); %cubic spline interpolation
absolute_viscosity_value=fnval(fabs_vis_vector,Tavg); %absolute viscosity value mPa.s
absolute_viscosity_value=absolute_viscosity_value*10^-3; %absolute viscosity value Pa.s
Sc=((absolute_viscosity_value*n_s)/P)*(r/c)^2; %sommerfeld number
%performance parameters for corresponding l/d ratio
if l/d==1
% for l/d=1 performance parameters
S_1=[0.0188 0.0446 0.121 0.264 0.631 1.33 ];
% the corresponding vector for the minimum film thickness variable,h0/c
hoc_1=[0.1 0.2 0.4 0.6 0.8 0.9 ];
% the corresponding vector for the coefficient of friction variable, Rf /c
Rfc_1=[1.05 1.70 3.2 5.79 12.8 26.4];
% the corresponding vector for the volumetric oil-flow rate, Q/ (RcnL)
Qc_1=[4.74 4.62 4.33 3.99 3.59 3.37];
% the corresponding vector for side leakage flow/total flow, Qs/Q
Qsc_1=[0.919 0.842 0.680 0.497 0.280 0.150];
elseif l/d==0.5
% for l/d=0.5 performance parameters
S_2=[0.0313 0.0923 0.319 0.779 2.03 4.31];
% the corresponding vector for the minimum film thickness variable,h0/c
hoc_2=[0.1 0.2 0.4 0.6 0.8 0.9];
% the corresponding vector for the coefficient of friction variable, Rf /c
Rfc_2=[1.60 3.26 8.10 17.0 40.9 85.6];
% the corresponding vector for the volumetric oil-flow rate, Q/ (RcnL)
Qc_2=[5.69 5.41 4.85 4.29 3.72 3.43];
% the corresponding vector for side leakage flow/total flow, Qs/Q
Qsc_2=[0.939 0.874 0.730 0.552 0.318 0.173];
elseif l/d==0.25
% for l/d=0.25 performance parameters
S_3=[0.0736 0.261 1.07 2.83 7.57 16.2];
% the corresponding vector for the minimum film thickness variable,h0/c
hoc_3=[0.1 0.2 0.4 0.6 0.8 0.9];
% the corresponding vector for the coefficient of friction variable, Rf /c
Rfc_3=[ 3.50 8.8 26.7 61.1 153.0 322.0];
% the corresponding vector for the volumetric oil-flow rate, Q/ (RcnL)
Qc_3=[5.91 5.60 4.99 4.37 3.76 3.45 ];
% the corresponding vector for side leakage flow/total flow, Qs/Q
Qsc_3=[0.945 0.884 0.746 0.567 0.330 0.180 ];
elseif l/d==inf
% for l/d=inf performance parameters
S_4=[0.0115 0.021 0.0389 0.0626 0.123 0.240];
% the corresponding vector for the minimum film thickness variable,h0/c
hoc_4=[0.1 0.2 0.4 0.6 0.8 0.9];
% the corresponding vector for the coefficient of friction variable, Rf /c
Rfc_4=[0.961 1.20 1.52 2.57 4.80];
% the corresponding vector for the volumetric oil-flow rate, Q/ (RcnL)
Qc_4=[0.760 1.56 2.26 2.83 3.03];
% the corresponding vector for side leakage flow/total flow, Qs/Q
Qsc_4=[0 0 0 0 0 0 0 0 0];
end
if l/d==1
% To interpolate the data, the MATLAB function csapi(X,Y) is used:
fhoc_1 = csapi( S_1, hoc_1 );
ffc_1 = csapi( S_1, Rfc_1);
fQR_1 = csapi( S_1, Qc_1);
fQs_1 = csapi( S_1, Qsc_1);
% The values of the interpolated data functions at Sc are calculated with:
hc = fnval(fhoc_1, Sc); % ho/c
fc = fnval(ffc_1, Sc); %(r/c)f
Qc = fnval(fQR_1, Sc); % Q/(r c n L)
Qsc= fnval(fQs_1, Sc); % Qs/Q
elseif l/d==0.5
% To interpolate the data, the MATLAB function csapi(X,Y) is used:
fhoc_2 = csapi( S_2, hoc_2);
ffc_2 = csapi( S_2, Rfc_2);
fQR_2 = csapi( S_2, Qc_2);
fQs_2 = csapi( S_2, Qsc_2);
% The values of the interpolated data functions at Sc are calculated with:
hc = fnval(fhoc_2, Sc); % ho/c
fc = fnval(ffc_2, Sc); %(r/c)f
Qc = fnval(fQR_2, Sc); % Q/(r c n L)
Qsc= fnval(fQs_2, Sc); % Qs/Q
elseif l/d==0.25
% To interpolate the data, the MATLAB function csapi(X,Y) is used:
fhoc_3= csapi( S_3, hoc_3 );
ffc_3= csapi( S_3, Rfc_3 );
fQR_3= csapi( S_3, Qc_3 );
fQs_3= csapi( S_3, Qsc_3 );
% The values of the interpolated data functions at Sc are calculated with:
hc = fnval(fhoc_3, Sc); % ho/c
fc = fnval(ffc_3, Sc); %(r/c)f
Qc = fnval(fQR_3, Sc); % Q/(r c n L)
Qsc= fnval(fQs_3, Sc); % Qs/Q
else l/d==inf
% To interpolate the data, the MATLAB function csapi(X,Y) is used:
fhoc_4 = csapi( S_4, hoc_4 );
ffc_4 = csapi( S_4, Rfc_4 );
fQR_4 = csapi( S_4, Qc_4 );
fQs_4= csapi( S_4, Qsc_4 );
% The values of the interpolated data functions at Sc are calculated with:
hc = fnval(fhoc_4, Sc); % ho/c
fc = fnval(ffc_4, Sc); %(r/c)f
Qc = fnval(fQR_4, Sc); % Q/(r c n L)
Qsc= fnval(fQs_4, Sc); % Qs/Q
end
4 types of l/d ratio is given on the chart as it seen. but when we write a l/d ratio which is not given on the chart we use interpolation to found it. for example if ı want to find l/d=0.60 how can ı write ıts matlab code and calculate it?
0 Comments
Accepted Answer
Cris LaPierre
on 2 Jan 2021
14 Comments
Cris LaPierre
on 3 Jan 2021
In this case, yes. The result of yinf is NaN because you have not defined values of Qc_4 beyond S_4=0.240. This causes the equation for y to return NaN.
When you go beyond your known data, that is called extrapolation. It is possible to exrapolate with interp1, but given the shape of your yinf line, I think it would be better to add more data points to your S_4 and Qc_4 vectors.
More Answers (1)
Alan Stevens
on 3 Jan 2021
Here's an example for l/d = 1/4. Note that because the S scale is logarithmic, it's best to interpolate logarithmically:
S_3=[0.0736 0.261 1.07 2.83 7.57 16.2];
% the corresponding vector for the volumetric oil-flow rate, Q/ (RcnL)
Qc_3=[5.91 5.60 4.99 4.37 3.76 3.45 ];
LOGS_3 = log10(S_3);
yqtr = @(S) interp1(LOGS_3,Qc_3,log10(S));
S = 0.08:0.01:10;
semilogx(S_3,Qc_3,'o'),grid
hold on
semilogx(S,yqtr(S))
I'm not sure why you have a different set of values of S for each curve, as they all cover broadly the same range.
Also, I'd be inclined to pick off more than 6 pairs of points for each curve.
3 Comments
Alan Stevens
on 3 Jan 2021
So , in the general expression for y, replace y1 by fnval(fQs_1, Sc);, y1/2 by fnval(fQs_2, Sc); etc.
See Also
Categories
Find more on Spline Construction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!