- /
-
4-point Scattering or Black Hole Formation
on 21 Oct 2024
- 10
- 108
- 1
- 0
- 429
Cite your audio source here (if applicable):
%Courtesy WolframTones: https://tones.wolfram.com/generate/GeVNxROeNrBXyOhBx1swNynhb57VEZo01jpARE7ilYHrb
drawframe(1);
Write your drawframe function below
function drawframe(f)
%A particular application of Hiroza equation.
%For more info: https://1drv.ms/b/s!AhGovQArU6bHgtpGy-KSv9nWQKWY-g
persistent ax k N S T
if f==1
%Initialize stuff
ax=gca;
k=0;
N=1283;
S=13.5;
T=ones(102)*(0.0000095*1i);
T(6:97,6:97)=0;
%Plot |Re(T)|
imagesc(ax,abs(real(T)));
%Set up axes & colormap
axis(ax,'image');
set(ax,'NextPlot','replacechildren','XTick',[],'YTick',[]);
colormap(ax,'jet');
clim(ax,[0 Inf]);
else
Tp=zeros(102); %Duplicate T because--
%Iterate...
while k<=N
k=k+1;
%...the Hiroza equation
Tp(2:101,2:101)=sqrt(T(2:101,3:102).*T(2:101,1:100)+T(3:102,2:101).*T(1:100,2:101))-1/4;
T=Tp; %--T is to be iterated but Tp is to be plotted below!
% & stop whenever frame "f" is ready
if rem(k,S)==0 || rem(k,S)==0.5
Tp(isinf(Tp))=0; %Blown up values set to 0 for plotting purposes!
imagesc(ax,abs(real(Tp))); %Frame "f" drawn,
break %so get out of here!
end
end
end
end