Main Content

reflectorCorner

Create corner reflector-backed antenna

Description

Use the reflectorCorner object to create a corner reflector-backed antenna. By default, the exciter antenna is a dipole. The feedpoint of the dipole is at the origin. The default dimensions are for an operating frequency of 1 GHz.

Creation

Description

example

cornerreflector = reflectorCorner creates a corner reflector backed dipole antenna for an operating frequency of 1 GHz using default values.

cornerreflector = reflectorCorner(Name,Value) sets properties using one or more name-value pairs. For example, cornerreflector = reflectorCorner('CornerAngle',45) creates a corner reflector-backed antenna with a corner angle of 45 degrees. Enclose each property name in quotes.

Properties

expand all

Antenna type used as an exciter, specified as any single-element antenna object. Except reflector and cavity antenna elements, you can use any of the antenna elements or array elements in the Antenna Toolbox™ as an exciter.

Example: 'Exciter',horn

Example: ant.Exciter = horn

Example: ant.Exciter = linearArray('patchMicrostrip')

Distance between exciter and reflector, specified as a scalar in meters.

Example: 'Spacing',0.0624

Example: cornerreflector.Spacing = 0.0624

Data Types: double

Angle made by corner reflector, specified as a scalar in degrees.

Example: 'CornerAngle',60

Example: cornerreflector.CornerAngle = 60

Data Types: double

Reflector length along the x-axis, specified as a scalar in meters. By default, ground plane length is measured along the x-axis. You can also set the 'GroundPlaneLength' to zero.

Example: 'GroundPlaneLength',0.4000

Example: cornerreflector.GroundPlaneLength = 0.4000

Data Types: double

Reflector width along the y-axis, specified as a scalar in meters. By default, ground plane width is measured along the y-axis. You can also set the 'GroundPlaneWidth' to zero.

Example: 'GroundPlaneWidth',0.6000

Example: cornerreflector.GroundPlaneWidth = 0.6000

Data Types: double

Type of the metal used as a conductor, specified as a metal material object. You can choose any metal from the MetalCatalog or specify a metal of your choice. For more information, see metal. For more information on metal conductor meshing, see Meshing.

Example: m = metal('Copper'); 'Conductor',m

Example: m = metal('Copper'); ant.Conductor = m

Loads added to the antenna feed, specified as a lumped element object. You can add a load anywhere on the surface of the antenna. By default, the load is at the origin. For more information, see lumpedElement.

Example: 'Load',lumpedelement, where, lumpedelement is the object for the load created using lumpedElement.

Example: cornerreflector.Load = lumpedElement('Impedance',75)

Tilt angle of the antenna, specified as a scalar or vector with each element unit in degrees. For more information, see Rotate Antennas and Arrays.

Example: 'Tilt',90

Example: ant.Tilt = 90

Example: 'Tilt',[90 90],'TiltAxis',[0 1 0;0 1 1] tilts the antenna at 90 degrees about the two axes defined by the vectors.

Note

The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Tilt axis of the antenna, specified as:

  • Three-element vector of Cartesian coordinates in meters. In this case, each coordinate in the vector starts at the origin and lies along the specified points on the X-, Y-, and Z-axes.

  • Two points in space, each specified as three-element vectors of Cartesian coordinates. In this case, the antenna rotates around the line joining the two points in space.

  • A string input describing simple rotations around one of the principal axes, 'X', 'Y', or 'Z'.

For more information, see Rotate Antennas and Arrays.

Example: 'TiltAxis',[0 1 0]

Example: 'TiltAxis',[0 0 0;0 1 0]

Example: ant.TiltAxis = 'Z'

Note

The wireStack antenna object only accepts the dot method to change its properties.

Data Types: double

Object Functions

showDisplay antenna or array structure; display shape as filled patch
axialRatioAxial ratio of antenna
beamwidthBeamwidth of antenna
chargeCharge distribution on metal or dielectric antenna or array surface
currentCurrent distribution on metal or dielectric antenna or array surface
designDesign prototype antenna or arrays for resonance around specified frequency
efficiencyRadiation efficiency of antenna
EHfieldsElectric and magnetic fields of antennas; Embedded electric and magnetic fields of antenna element in arrays
impedanceInput impedance of antenna; scan impedance of array
meshMesh properties of metal or dielectric antenna or array structure
meshconfigChange mesh mode of antenna structure
optimizeOptimize antenna or array using SADEA optimizer
patternRadiation pattern and phase of antenna or array; Embedded pattern of antenna element in array
patternAzimuthAzimuth pattern of antenna or array
patternElevationElevation pattern of antenna or array
rcsCalculate and plot radar cross section (RCS) of platform, antenna, or array
returnLossReturn loss of antenna; scan return loss of array
sparametersCalculate S-parameter for antenna and antenna array objects
vswrVoltage standing wave ratio of antenna

Examples

collapse all

Create and view a corner reflector-backed dipole.

cornerreflector = reflectorCorner
cornerreflector = 
  reflectorCorner with properties:

              Exciter: [1x1 dipole]
    GroundPlaneLength: 0.2000
     GroundPlaneWidth: 0.4000
          CornerAngle: 90
              Spacing: 0.0750
            Conductor: [1x1 metal]
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]

show(cornerreflector)

Figure contains an axes object. The axes object with title reflectorCorner antenna element contains 5 objects of type patch, surface. These objects represent PEC, feed.

Plot the radiation pattern at 1 GHz.

pattern(cornerreflector,1e9)

Figure contains an axes object and other objects of type uicontrol. The axes object contains 5 objects of type patch, surface.

Create a linear array of inverted-F antennas.

la = linearArray('Element',invertedF,'ElementSpacing',0.1);

Create a corner reflector-backed linear array of inverted-F antennas.

ant = reflectorCorner('Exciter',la)
ant = 
  reflectorCorner with properties:

              Exciter: [1x1 linearArray]
    GroundPlaneLength: 0.2000
     GroundPlaneWidth: 0.4000
          CornerAngle: 90
              Spacing: 0.0750
            Conductor: [1x1 metal]
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]

show(ant)

Figure contains an axes object. The axes object with title reflectorCorner antenna element contains 14 objects of type patch, surface. These objects represent PEC, feed.

Create corner reflector-backed log-periodic antenna.

e = lpda;
ant = reflectorCorner('Exciter',e)
ant = 
  reflectorCorner with properties:

              Exciter: [1x1 lpda]
    GroundPlaneLength: 0.2000
     GroundPlaneWidth: 0.4000
          CornerAngle: 90
              Spacing: 0.0750
            Conductor: [1x1 metal]
                 Tilt: 0
             TiltAxis: [1 0 0]
                 Load: [1x1 lumpedElement]

show(ant)

Figure contains an axes object. The axes object with title reflectorCorner antenna element contains 7 objects of type patch, surface. These objects represent PEC, feed, FR4.

Introduced in R2018a